Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 135(5): 813-24, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041747

RESUMO

N-acylphosphatidylethanolamines (NAPEs) are a relatively abundant group of plasma lipids of unknown physiological significance. Here, we show that NAPEs are secreted into circulation from the small intestine in response to ingested fat and that systemic administration of the most abundant circulating NAPE, at physiologic doses, decreases food intake in rats without causing conditioned taste aversion. Furthermore, (14)C-radiolabeled NAPE enters the brain and is particularly concentrated in the hypothalamus, and intracerebroventricular infusions of nanomolar amounts of NAPE reduce food intake, collectively suggesting that its effects may be mediated through direct interactions with the central nervous system. Finally, chronic NAPE infusion results in a reduction of both food intake and body weight, suggesting that NAPE and long-acting NAPE analogs may be novel therapeutic targets for the treatment of obesity.


Assuntos
Regulação do Apetite , Fosfatidiletanolaminas/fisiologia , Amidas , Animais , Peso Corporal , Gorduras na Dieta/metabolismo , Endocanabinoides , Etanolaminas , Hipotálamo/metabolismo , Intestino Delgado/metabolismo , Camundongos , Camundongos Obesos , Atividade Motora , Obesidade/metabolismo , Ácidos Palmíticos/metabolismo , Fosfatidiletanolaminas/sangue , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Espectrometria de Massas em Tandem
2.
Int J Mol Sci ; 23(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35563425

RESUMO

We found several blood biomarkers through computational secretome analyses, including aldo-keto reductase family 1 member B10 (AKR1B10), which reflected the progression of nonalcoholic fatty liver disease (NAFLD). After confirming that hepatic AKR1B10 reflected the progression of NAFLD in a subgroup with NAFLD, we evaluated the diagnostic accuracy of plasma AKR1B10 and other biomarkers for the diagnosis of nonalcoholic steatohepatitis (NASH) and fibrosis in replication cohort. We enrolled healthy control subjects and patients with biopsy-proven NAFLD (n = 102) and evaluated the performance of various diagnostic markers. Plasma AKR1B10 performed well in the diagnosis of NASH with an area under the receiver operating characteristic (AUROC) curve of 0.834 and a cutoff value of 1078.2 pg/mL, as well as advanced fibrosis (AUROC curve value of 0.914 and cutoff level 1078.2 pg/mL), with further improvement in combination with C3. When we monitored a subgroup of obese patients who underwent bariatric surgery (n = 35), plasma AKR1B10 decreased dramatically, and 40.0% of patients with NASH at baseline showed a decrease in plasma AKR1B10 levels to below the cutoff level after the surgery. In an independent validation study, we proved that plasma AKR1B10 was a specific biomarker of NAFLD progression across varying degrees of renal dysfunction. Despite perfect correlation between plasma and serum levels of AKR1B10 in paired sample analysis, its serum level was 1.4-fold higher than that in plasma. Plasma AKR1B10 alone and in combination with C3 could be a useful noninvasive biomarker for the diagnosis of NASH and hepatic fibrosis.


Assuntos
Membro B10 da Família 1 de alfa-Ceto Redutase , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Membro B10 da Família 1 de alfa-Ceto Redutase/sangue , Membro B10 da Família 1 de alfa-Ceto Redutase/metabolismo , Biomarcadores , Fibrose , Humanos , Fígado/patologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia
3.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195030, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670485

RESUMO

Antiretroviral therapy-naive people living with HIV possess less fat than people without HIV. Previously, we found that HIV-1 transactivator of transcription (TAT) decreases fat in ob/ob mice. The TAT38 (a.a. 20-57) is important in the inhibition of adipogenesis and contains three functional domains: Cys-ZF domain (a.a. 20-35 TACTNCYCAKCCFQVC), core-domain (a.a. 36-46, FITKALGISYG), and protein transduction domain (PTD)(a.a. 47-57, RAKRRQRRR). Interestingly, the TAT38 region interacts with the Cyclin T1 of the P-TEFb complex, of which expression increases during adipogenesis. The X-ray crystallographic structure of the complex showed that the Cys-ZF and the core domain bind to the Cyclin T1 via hydrophobic interactions. To prepare TAT38 mimics with structural and functional similarities to TAT38, we replaced the core domain with a hydrophobic aliphatic amino acid (from carbon numbers 5 to 8). The TAT38 mimics with 6-hexanoic amino acid (TAT38 Ahx (C6)) and 7-heptanoic amino acid (TAT38 Ahp (C7)) inhibited adipogenesis of 3T3-L1 potently, reduced cellular triglyceride content, and decreased body weight of diet-induced obese (DIO) mice by 10.4-11 % in two weeks. The TAT38 and the TAT38 mimics potently repressed the adipogenic transcription factors genes, C/EBPα, PPARγ, and SREBP1. Also, they inhibit the phosphorylation of PPARγ. The TAT peptides may be promising candidates for development into a drug against obesity or diabetes.


Assuntos
Adipogenia , PPAR gama , Proteína de Ligação a Elemento Regulador de Esterol 1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , PPAR gama/metabolismo , Adipogenia/efeitos dos fármacos , Camundongos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Células 3T3-L1 , Humanos , Regulação da Expressão Gênica , Camundongos Obesos , Masculino , Ciclina T/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Estimuladoras de Ligação a CCAAT
4.
J Biol Chem ; 287(22): 18429-39, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22493506

RESUMO

The role of serine palmitoyltransferase (SPT) and de novo ceramide biosynthesis in cardiac ceramide and sphingomyelin metabolism is unclear. To determine whether the de novo synthetic pathways, rather than ceramide uptake from circulating lipoproteins, is important for heart ceramide levels, we created cardiomyocyte-specific deficiency of Sptlc2, a subunit of SPT. Heart-specific Sptlc2-deficient (hSptlc2 KO) mice had a >35% reduction in ceramide, which was limited to C18:0 and very long chain ceramides. Sphingomyelinase expression, and levels of sphingomyelin and diacylglycerol were unchanged. But surprisingly phospholipids and acyl CoAs contained increased saturated long chain fatty acids. hSptlc2 KO mice had decreased fractional shortening and thinning of the cardiac wall. While the genes regulating glucose and fatty acid metabolism were not changed, expression of cardiac failure markers and the genes involved in the formation of extracellular matrices were up-regulated in hSptlc2 KO hearts. In addition, ER-stress markers were up-regulated leading to increased apoptosis. These results suggest that Sptlc2-mediated de novo ceramide synthesis is an essential source of C18:0 and very long chain, but not of shorter chain, ceramides in the heart. Changes in heart lipids other than ceramide levels lead to cardiac toxicity.


Assuntos
Ceramidas/metabolismo , Coração/fisiopatologia , Miocárdio/enzimologia , Serina C-Palmitoiltransferase/metabolismo , Animais , Glicemia/metabolismo , Western Blotting , Células Cultivadas , Marcação In Situ das Extremidades Cortadas , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Serina C-Palmitoiltransferase/genética
5.
Am J Physiol Endocrinol Metab ; 305(7): E795-804, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23921137

RESUMO

APPL1 (adaptor protein containing PH domain, PTB domain, and leucine zipper motif 1) has been established as an important mediator of insulin and adiponectin signaling. Here, we investigated the influence of transgenic (Tg) APPL1 overexpression in mice on high-fat diet (HFD)-induced cardiomyopathy in mice. Wild-type (WT) mice fed an HFD for 16 wk showed cardiac dysfunction, determined by echocardiography, with decreased ejection fraction, decreased fractional shortening, and increased end diastolic volume. HFD-fed APPL1 Tg mice were significantly protected from this dysfunction. Speckle tracking echocardiography to accurately assess cardiac tissue deformation strain and wall motion also indicated dysfunction in WT mice and a similar improvement in Tg vs. WT mice on HFD. APPL1 Tg mice had less HFD-induced increase in circulating nonesteridied fatty acid levels and myocardial lipid accumulation. Lipidomic analysis using LC-MS-MS showed HFD significantly increased myocardial contents of distinct ceramide, sphingomyelin, and diacylglycerol (DAG) species, of which increases in C16:0 and C18:0 ceramides plus C16:0 and C18:1 DAGs were attenuated in Tg mice. A glucose tolerance test indicated less peripheral insulin resistance in response to HFD in Tg mice, which was also apparent by measuring cardiac Akt phosphorylation and cardiomyocyte glucose uptake. In summary, APPL1 Tg mice exhibit improved peripheral metabolism, reduced cardiac lipotoxicity, and improved insulin sensitivity. These cellular effects contribute to protection from HFD-induced cardiomyopathy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cardiomiopatias/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Peso Corporal/fisiologia , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/metabolismo , Lipídeos/sangue , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Prostaglandins Other Lipid Mediat ; 94(1-2): 44-52, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21167294

RESUMO

Sphingolipids are membrane components and are involved in cell proliferation, apoptosis and metabolic regulation. In this study we investigated whether de novo sphingolipid biosynthesis in macrophages is regulated by inflammatory stimuli. Lipopolysaccharide (LPS) treatment upregulated Sptlc2, a subunit of serine palmitoyltransferase (SPT), mRNA and protein in Raw264.7 and mouse peritoneal macrophages, but Sptlc1, another subunit of SPT, was not altered. SPT activation by LPS elevated cellular levels of ceramides and sphingomyelin (SM). Pharmacological inhibition of nuclear factor kappa B (NFκB) prevented LPS-induced upregulation of Sptlc2 while transfection of p65 subunit of NFκB upregulated Sptlc2 and increased cellular ceramide levels. In contrast, MAP kinases were not involved in regulation of sphingolipid biosynthesis. Analysis of Sptlc2 promoter and chromatin immunoprecipitation (ChIP) assay showed that NFκB binding sites are located in Sptlc2 promoter region. Our results demonstrate that inflammatory stimuli activate de novo sphingolipid biosynthesis via NFκB and may play a critical role in lipid metabolism in macrophages.


Assuntos
Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Serina C-Palmitoiltransferase/genética , Esfingolipídeos/biossíntese , Regulação para Cima , Animais , Macrófagos/metabolismo , Camundongos , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Esfingomielinas/genética , Esfingomielinas/metabolismo , Transfecção
7.
Elife ; 92020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271147

RESUMO

Phosphate overload contributes to mineral bone disorders that are associated with crystal nephropathies. Phytate, the major form of phosphorus in plant seeds, is known as an indigestible and of negligible nutritional value in humans. However, the mechanism and adverse effects of high-phytate intake on Ca2+ and phosphate absorption and homeostasis are unknown. Here, we show that excessive intake of phytate along with a low-Ca2+ diet fed to rats contributed to the development of crystal nephropathies, renal phosphate wasting, and bone loss through tubular dysfunction secondary to dysregulation of intestinal calcium and phosphate absorption. Moreover, Ca2+ supplementation alleviated the detrimental effects of excess dietary phytate on bone and kidney through excretion of undigested Ca2+-phytate, which prevented a vicious cycle of intestinal phosphate overload and renal phosphate wasting while improving intestinal Ca2+ bioavailability. Thus, we demonstrate that phytate is digestible without a high-Ca2+ diet and is a risk factor for phosphate overloading and for the development of crystal nephropathies and bone disease.


Assuntos
Osso e Ossos/metabolismo , Cálcio da Dieta/efeitos adversos , Cálcio/metabolismo , Minerais/metabolismo , Ração Animal/análise , Animais , Dieta/efeitos adversos , Feminino , Masculino , Fosfatos , Fósforo/metabolismo , Ácido Fítico/farmacologia , Ratos Sprague-Dawley , Insuficiência Renal Crônica/metabolismo , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa