Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38339502

RESUMO

In diagnostic ultrasound imaging applications, preamplifiers are used as first-stage analog front-end amplifiers for ultrasound transducers because they can amplify weak acoustic signals generated directly by ultrasound transducers. For emerging diagnostic ultrasound imaging applications, different types of preamplifiers with specific design parameters and circuit topologies have been developed, depending on the types of the ultrasound transducer. In particular, the design parameters of the preamplifier, such as the gain, bandwidth, input- or output-referred noise components, and power consumption, have a tradeoff relationship. Guidelines on the detailed design concept, design parameters, and specific circuit design techniques of the preamplifier used for ultrasound transducers are outlined in this paper, aiming to help circuit designers and academic researchers optimize the performance of ultrasound transducers used in the diagnostic ultrasound imaging applications for research directions.

2.
Sensors (Basel) ; 23(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904610

RESUMO

The ultrasound instrumentation uses linear power amplifiers with low power efficiency, generating unwanted heat and resulting in the deterioration of the echo signal quality of measured targets. Therefore, this study aims to develop a power amplifier scheme to increase power efficiency while maintaining appropriate echo signal quality. In communication systems, the Doherty power amplifier has shown relatively good power efficiency while producing high signal distortion. The same design scheme cannot be directly applied to ultrasound instrumentation. Therefore, the Doherty power amplifier needs to be re-designed. To verify the feasibility of the instrumentation, a Doherty power amplifier was designed to obtain high power efficiency. The measured gain, output 1-dB compression point, and power-added efficiency of the designed Doherty power amplifier were 33.71 dB, 35.71 dBm, and 57.24% at 25 MHz, respectively. In addition, the performance of the developed amplifier was measured and tested using the ultrasound transducer through the pulse-echo responses. The output power with 25 MHz, 5-cycle, and 43.06 dBm generated from the Doherty power amplifier was sent through the expander to the focused ultrasound transducer with 25 MHz and 0.5″ diameter. The detected signal was sent via a limiter. Afterwards, the signal was amplified by a 36.8 dB gain preamplifier, and then displayed in the oscilloscope. The measured peak-to-peak amplitude in the pulse-echo response with an ultrasound transducer was 0.9698 V. The data showed a comparable echo signal amplitude. Therefore, the designed Doherty power amplifier can improve the power efficiency used for medical ultrasound instrumentation.

3.
Sensors (Basel) ; 23(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37050526

RESUMO

An inverse Class-E power amplifier was designed for an ultrasound transducer. The proposed inverse Class-E power amplifier can be useful because of the low series inductance values used in the output matching network that helps to reduce signal distortions. Therefore, a newly designed Class-E power amplifier can obtain a proper echo signal quality. The measured output voltage, voltage gain, voltage gain difference, and power efficiency were 50.1 V, 22.871 dB, 0.932 dB, and 55.342%, respectively. This low voltage difference and relatively high efficiency could verify the capability of the ultrasound transducer. The pulse-echo response experiment using an ultrasound transducer was performed to verify the capability of the proposed inverse Class-E power amplifier. The obtained echo signal amplitude and pulse width were 6.01 mVp-p and 0.81 µs, respectively. The -6 dB bandwidth and center frequencies of the echo signal were 27.25 and 9.82 MHz, respectively. Consequently, the designed Class-E power amplifier did not significantly alter the performance of the center frequency of the ultrasound transducer; therefore, it could be employed particularly in certain ultrasound applications that require high linearity and reasonable power efficiency.

4.
Sensors (Basel) ; 23(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177641

RESUMO

The gain of class-C power amplifiers is generally lower than that of class-A power amplifiers. Thus, higher-amplitude input voltage signals for class-C power amplifiers are required. However, high-amplitude input signals generate unwanted harmonic signals. Therefore, a novel bias circuit was proposed to suppress the harmonic signals generated by class-C power amplifiers, which improves the output voltage amplitudes. To verify the proposed idea, the input harmonic signals when using a harmonic-reduced bias circuit (-61.31 dB, -89.092 dB, -90.53 dB, and -90.32 dB) were measured and were found to be much lower than those when using the voltage divider bias circuit (-57.19 dB, -73.49 dB, -70.97 dB, and -73.61 dB) at 25 MHz, 50 MHz, 75 MHz, and 100 MHz, respectively. To further validate the proposed idea, the pulse-echo measurements were compared using the bias circuits. The peak-to-peak echo amplitude and bandwidth of the piezoelectric transducer, measured when using a harmonic-reduced bias circuit (27.07 mV and 37.19%), were higher than those achieved with a voltage divider circuit (18.55 mV and 22.71%). Therefore, the proposed scheme may be useful for ultrasound instruments with low sensitivity.

5.
Sensors (Basel) ; 22(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433458

RESUMO

High-frequency ultrasound transducers offer higher spatial resolution than low-frequency ultrasound transducers; however, their maximum sensitivity are lower. Matching circuits are commonly utilized to increase the amplitude of high-frequency ultrasound transducers because the size of the piezoelectric material decreases as the operating frequency of the transducer increases. Thus, it lowers the limit of the applied voltage to the piezoelectric materials. Additionally, the electrical impedances of ultrasound transducers generally differ at the resonant-, center-, and anti-resonant-frequencies. The currently developed most-matching circuits provide electrical matching at the center frequency ranges for ultrasound transmitters and transducers. In addition, matching circuits with transmitters are more difficult to use to control the echo signal quality of the transducers because it is harder to control the bandwidth and gain of an ultrasound transmitter working in high-voltage operation. Therefore, we provide a novel pre-matching circuit method to improve the amplitude and bandwidth of high-frequency ultrasound transducers at the resonant-, center-, and anti-resonant-frequency ranges, with an ultrasound receiver and transducer. To verify the pre-matching circuit, pulse-echo response tests were conducted on the ultrasound transducers. The results show that the designed pre-matching circuits provide higher amplitude (5.63- and 2.02-times) and wider bandwidth (175.55% and 62.01%) for the high-frequency ultrasound transducer compared to the original circuit without a pre-matching circuit, and the parallel capacitor with a series-inductor circuit, respectively; therefore, the proposed pre-matching circuit is an appropriate solution for improving the amplitudes and bandwidths of high-frequency ultrasound transducers over wide frequency ranges.


Assuntos
Transdutores , Desenho de Equipamento , Ultrassonografia , Impedância Elétrica
6.
Sensors (Basel) ; 22(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36560076

RESUMO

Ultrasound systems have been widely used for consultation; however, they are susceptible to cyberattacks. Such ultrasound systems use random bits to protect patient information, which is vital to the stability of information-protecting systems used in ultrasound machines. The stability of the random bit must satisfy its unpredictability. To create a random bit, noise generated in hardware is typically used; however, extracting sufficient noise from systems is challenging when resources are limited. There are various methods for generating noises but most of these studies are based on hardware. Compared with hardware-based methods, software-based methods can be easily accessed by the software developer; therefore, we applied a mathematically generated noise function to generate random bits for ultrasound systems. Herein, we compared the performance of random bits using a newly proposed mathematical function and using the frequency of the central processing unit of the hardware. Random bits are generated using a raw bitmap image measuring 1000 × 663 bytes. The generated random bit analyzes the sampling data in generation time units as time-series data and then verifies the mean, median, and mode. To further apply the random bit in an ultrasound system, the image is randomized by applying exclusive mixing to a 1000 × 663 ultrasound phantom image; subsequently, the comparison and analysis of statistical data processing using hardware noise and the proposed algorithm were provided. The peak signal-to-noise ratio and mean square error of the images are compared to evaluate their quality. As a result of the test, the min entropy estimate (estimated value) was 7.156616/8 bit in the proposed study, which indicated a performance superior to that of GetSystemTime. These results show that the proposed algorithm outperforms the conventional method used in ultrasound systems.


Assuntos
Algoritmos , Software , Humanos , Ultrassonografia , Imagens de Fantasmas
7.
Sensors (Basel) ; 22(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35458887

RESUMO

Significant progress has been made in the field of micro/nano-retinal implant technologies. However, the high pixel range, power leakage, reliability, and lifespan of retinal implants are still questionable. Active implantable devices are safe, cost-effective, and reliable. Although a device that can meet basic safety requirements set by the Food and Drug Administration and the European Union is reliable for long-term use and provides control on current and voltage parameters, it will be expensive and cannot be commercially successful. This study proposes an economical, fully controllable, and configurable wireless communication system based on field-programmable gated arrays (FPGAs) that were designed with the ability to cope with the issues that arise in retinal implantation. This system incorporates hexagonal biphasic stimulation pulses generated by a digital controller that can be fully controlled using an external transmitter. The integration of two separate domain analog systems and a digital controller based on FPGAs is proposed in this study. The system was also implemented on a microchip and verified using in vitro results.


Assuntos
Próteses e Implantes , Retina , Desenho de Equipamento , Reprodutibilidade dos Testes , Telemetria/métodos , Tecnologia sem Fio
8.
Sensors (Basel) ; 22(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35271042

RESUMO

In this study, we propose a low-area multi-channel controlled dielectric breakdown (CDB) system that simultaneously produces several nanopore sensors. Conventionally, solid-state nanopores are prepared by etching or drilling openings in a silicon nitride (SiNx) substrate, which is expensive and requires a long processing time. To address these challenges, a CDB technique was introduced and used to fabricate nanopore channels in SiNx membranes. However, the nanopore sensors produced by the CDB result in a severe pore-to-pore diameter variation as a result of different fabrication conditions and processing times. Accordingly, it is indispensable to simultaneously fabricate nanopore sensors in the same environment to reduce the deleterious effects of pore-to-pore variation. In this study, we propose a four-channel CDB system that comprises an amplifier that boosts the command voltage, a 1-to-4 multiplexer, a level shifter, a low-noise transimpedance amplifier and a data acquisition device. To prove our design concept, we used the CDB system to fabricate four nanopore sensors with diameters of <10 nm, and its in vitro performance was verified using λ-DNA samples.


Assuntos
Nanoporos , Nanotecnologia , DNA , Nanotecnologia/métodos , Sistemas Automatizados de Assistência Junto ao Leito
9.
Sensors (Basel) ; 22(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35957420

RESUMO

The brain-computer interface (BCI) is used to understand brain activities and external bodies with the help of the motor imagery (MI). As of today, the classification results for EEG 4 class BCI competition dataset have been improved to provide better classification accuracy of the brain computer interface systems (BCIs). Based on this observation, a novel quick-response eigenface analysis (QR-EFA) scheme for motor imagery is proposed to improve the classification accuracy for BCIs. Thus, we considered BCI signals in standardized and sharable quick response (QR) image domain; then, we systematically combined EFA and a convolution neural network (CNN) to classify the neuro images. To overcome a non-stationary BCI dataset available and non-ergodic characteristics, we utilized an effective neuro data augmentation in the training phase. For the ultimate improvements in classification performance, QR-EFA maximizes the similarities existing in the domain-, trial-, and subject-wise directions. To validate and verify the proposed scheme, we performed an experiment on the BCI dataset. Specifically, the scheme is intended to provide a higher classification output in classification accuracy performance for the BCI competition 4 dataset 2a (C4D2a_4C) and BCI competition 3 dataset 3a (C3D3a_4C). The experimental results confirm that the newly proposed QR-EFA method outperforms the previous the published results, specifically from 85.4% to 97.87% ± 0.75 for C4D2a_4C and 88.21% ± 6.02 for C3D3a_4C. Therefore, the proposed QR-EFA could be a highly reliable and constructive framework for one of the MI classification solutions for BCI applications.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia/métodos , Imagens, Psicoterapia , Imaginação/fisiologia
10.
Sensors (Basel) ; 22(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015803

RESUMO

A novel whitening technique for motor imagery (MI) classification is proposed to reduce the accuracy variance of brain-computer interfaces (BCIs). This method is intended to improve the electroencephalogram eigenface analysis performance for the MI classification of BCIs. In BCI classification, the variance of the accuracy among subjects is sensitive to the accuracy itself for superior classification results. Hence, with the help of Gram-Schmidt orthogonalization, we propose a BCI channel whitening (BCICW) scheme to minimize the variance among subjects. The newly proposed BCICW method improved the variance of the MI classification in real data. To validate and verify the proposed scheme, we performed an experiment on the BCI competition 3 dataset IIIa (D3D3a) and the BCI competition 4 dataset IIa (D4D2a) using the MATLAB simulation tool. The variance data when using the proposed BCICW method based on Gram-Schmidt orthogonalization was much lower (11.21) than that when using the EFA method (58.33) for D3D3a and decreased from (17.48) to (9.38) for D4D2a. Therefore, the proposed method could be effective for MI classification of BCI applications.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia/métodos , Humanos , Imagens, Psicoterapia , Imaginação
11.
Sensors (Basel) ; 22(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35408235

RESUMO

We developed a customized doubly Q-switched laser that can control the pulse width to easily find weak acoustic signals for photoacoustic (PA) systems. As the laser was constructed using an acousto-optic Q-switcher, in contrast to the existing commercial laser system, it is easier to control the pulse repetition rate and pulse width. The laser has the following control ranges: 10 Hz-10 kHz for the pulse repetition rate, 40-150 ns for the pulse width, and 50-500 µJ for the pulse energy. Additionally, a custom-made modularized sample stage was used to develop a fully customized PA system. The modularized sample stage has a nine-axis control unit design for the PA system, allowing the sample target and transducer to be freely adjusted. This makes the system suitable for capturing weak PA signals. Images were acquired and processed for widely used sample targets (hair and insulating tape) with the developed fully customized PA system. The customized doubly Q-switched laser-based PA imaging system presented in this paper can be modified for diverse conditions, including the wavelength, frequency, pulse width, and sample target; therefore, we expect that the proposed technique will be helpful in conducting fundamental and applied research for PA imaging system applications.


Assuntos
Lasers de Estado Sólido , Acústica , Óptica e Fotônica , Análise Espectral , Transdutores
12.
Sensors (Basel) ; 21(7)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800641

RESUMO

Ultrasound transducer devices have their own frequency ranges, depending on the applications and specifications, due to penetration depth, sensitivity, and image resolution. For imaging applications, in particular, the transducer devices are preferable to have a wide bandwidth due to the specific information generated by the tissue or blood vessel structures. To support these ultrasound transducer devices, ultrasound power amplifier hardware with a wide bandwidth can improve the transducer performance. Therefore, we developed a new bandwidth expander circuit using specially designed switching architectures to increase the power amplifier bandwidth. The measured bandwidth of the power amplifier with the help of the bandwidth expander circuit increased by 56.9%. In addition, the measured echo bandwidths of the 15-, 20-, and 25-MHz transducer devices were increased by 8.1%, 6.0%, and 9.8%, respectively, with the help of the designed bandwidth expander circuit. Therefore, the designed architecture could help an ultrasound system hardware with a wider bandwidth, thus supporting the use of different frequency ultrasound transducer devices with a single developed ultrasound system.

13.
Sensors (Basel) ; 21(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921082

RESUMO

To obtain a high-quality signal from an ultrasound system through the transmitter, it is necessary to achieve an appropriate operating point of the power amplifier in the ultrasonic transmitter by applying high static bias voltage. However, the power amplifier needs to be operated at low bias voltage, because a power amplifier operating at high bias voltage may consume a large amount of power and increase the temperature of the active devices, worsening the signal characteristics of the ultrasound systems. Therefore, we propose a new method of increasing the bias voltage for a specific period to solve this problem by reducing the output signal distortion of the power amplifier and decreasing the load on the active device. To compare the performance of the proposed method, we measured and compared the signals of the amplifier with the proposed technique and the amplifier only. Notably, improvement was achieved with 11.1% of the power added efficiency and 3.23% of the total harmonic distortion (THD). Additionally, the echo signal generated by the ultrasonic transducer was improved by 2.73 dB of amplitude and 0.028% of THD under the conditions of an input signal of 10 mW. Therefore, the proposed method could be useful for improving ultrasonic transmitter performance using the developed technique.

14.
Sensors (Basel) ; 21(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451078

RESUMO

This paper introduces an ambient light rejection (ALR) circuit for the autonomous adaptation of a subretinal implant system. The sub-retinal implants, located beneath a bipolar cell layer, are known to have a significant advantage in spatial resolution by integrating more than a thousand pixels, compared to epi-retinal implants. However, challenges remain regarding current dispersion in high-density retinal implants, and ambient light induces pixel saturation. Thus, the technical issues of ambient light associated with a conventional image processing technique, which lead to high power consumption and area occupation, are still unresolved. Thus, it is necessary to develop a novel image-processing unit to handle ambient light, considering constraints related to power and area. In this paper, we present an ALR circuit as an image-processing unit for sub-retinal implants. We first introduced an ALR algorithm to reduce the ambient light in conventional retinal implants; next, we implemented the ALR algorithm as an application-specific integrated chip (ASIC). The ALR circuit was fabricated using a standard 0.35-µm CMOS process along with an image-sensor-based stimulator, a sensor pixel, and digital blocks. As experimental results, the ALR circuit occupies an area of 190 µm2, consumes a power of 3.2 mW and shows a maximum response time of 1.6 s at a light intensity of 20,000 lux. The proposed ALR circuit also has a pixel loss rate of 0.3%. The experimental results show that the ALR circuit leads to a sensor pixel (SP) being autonomously adjusted, depending on the light intensity.


Assuntos
Próteses e Implantes , Retina , Algoritmos , Processamento de Imagem Assistida por Computador , Luz
15.
Sensors (Basel) ; 21(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34372203

RESUMO

As technology evolves, more components are integrated into printed circuit boards (PCBs) and the PCB layout increases. Because small defects on signal trace can cause significant damage to the system, PCB surface inspection is one of the most important quality control processes. Owing to the limitations of manual inspection, significant efforts have been made to automate the inspection by utilizing high resolution CCD or CMOS sensors. Despite the advanced sensor technology, setting the pass/fail criteria based on small failure samples has always been challenging in traditional machine vision approaches. To overcome these problems, we propose an advanced PCB inspection system based on a skip-connected convolutional autoencoder. The deep autoencoder model was trained to decode the original non-defect images from the defect images. The decoded images were then compared with the input image to identify the defect location. To overcome the small and imbalanced dataset in the early manufacturing stage, we applied appropriate image augmentation to improve the model training performance. The experimental results reveal that a simple unsupervised autoencoder model delivers promising performance, with a detection rate of up to 98% and a false pass rate below 1.7% for the test data, containing 3900 defect and non-defect images.

16.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557045

RESUMO

We propose an integrated front-end data acquisition circuit for a hybrid ultrasound (US)-gamma probe. The proposed circuit consists of three main parts: (1) a preamplifier for the gamma probe, (2) a preprocessing analog circuit for the US, and (3) a digitally controlled analog switch. By exploiting the long idle time of the US system, an analog switch can be used to acquire data of both systems using a single output channel simultaneously. On the nuclear medicine (NM) gamma probe side, energy resolutions of 18.4% and 17.5% were acquired with the standalone system and with the proposed switching circuit, respectively, when irradiated with a Co-57 radiation source. Similarly, signal-to-noise ratios of 14.89 and 13.12 dB were achieved when US echo signals were acquired with the standalone system and with the proposed switching circuit, respectively. Lastly, a combined US-gamma probe was used to scan a glass target and a sealed radiation source placed in a water tank. The results confirmed that, by using a hybrid US-gamma probe system, it is possible to distinguish between the two objects and acquire structural information (ultrasound) alongside molecular information (gamma radiation source).

17.
Sensors (Basel) ; 20(21)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147757

RESUMO

Piezoelectric transducers are triggered by the output voltage signal of a transmit voltage amplifier (TVA). In mobile ultrasound instruments, the sensitivity of piezoelectric transducers is a critical parameter under limited power supply from portable batteries. Therefore, the enhancement of the output voltage amplitude of the amplifier under limited power supply could increase the sensitivity of the piezoelectric transducer. Several-stage TVAs are used to increase the voltage amplitude. However, inter-stage design issues between each TVA block may reduce the voltage amplitude and bandwidth because the electronic components of the amplifier are nonlinearly operated at the desired frequency ranges. To compensate for this effect, we propose a novel inter-stage output voltage amplitude improvement (OVAI) circuit integrated with a class-B TVA circuit. We performed fundamental A-mode pulse-echo tests using a 15-MHz immersion-type piezoelectric transducer to verify the design. The echo amplitude and bandwidth when using an inter-stage OVAI circuit integrated with a class-B TVA circuit (696 mVPP and 29.91%, respectively) were higher than those obtained when using only the class-B TVA circuit (576 mVPP and 24.21%, respectively). Therefore, the proposed OVAI circuit could be beneficial for increasing the output amplitude of the class-B TVA circuit for mobile ultrasound machines.

18.
Sensors (Basel) ; 20(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947972

RESUMO

Wide bandwidth ultrasonic devices are a necessity in high-resolution ultrasonic systems. Therefore, constant output voltages need to be produced across the wide bandwidths of a power amplifier. We present the first design of a wide bandwidth class-S power amplifier for ultrasonic devices. The -6 dB bandwidth of the developed class-S power amplifier was measured at 125.07% at 20 MHz, thus, offering a wide bandwidth for ultrasonic devices. Pulse-echo measurement is a performance measurement method used to evaluate the performance of ultrasonic transducers, components, or systems. The pulse-echo signals were obtained using an ultrasonic transducer with designed power amplifiers. In the pulse-echo measurements, time and frequency analyses were conducted to evaluate the bandwidth flatness of the power amplifiers. The frequency range of the ultrasonic transducer was measured and compared when using the developed class-S and commercial class-A power amplifiers with the same output voltages. The class-S power amplifiers had a relatively flat bandwidth (109.7 mV at 17 MHz, 112.0 mV at 20 MHz, and 109.5 mV at 23 MHz). When the commercial class-A power amplifier was evaluated under the same conditions, an uneven bandwidth was recorded (110.6 mV at 17 MHz, 111.5 mV at 20 MHz, and 85.0 mV at 23 MHz). Thus, we demonstrated that the designed class-S power amplifiers could prove useful for ultrasonic devices with a wide frequency range.

19.
Sensors (Basel) ; 20(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967294

RESUMO

Piezoelectric transducers are important devices that are triggered by amplifier circuits in mobile ultrasound systems. Therefore, amplifier performance is vital because it determines the acoustic piezoelectric transducer performances. Particularly, mobile ultrasound applications have strict battery performance and current consumption requirements; hence, amplifier devices should exhibit good efficiency because the direct current (DC) voltage in the battery are provided to the supply voltages of the amplifier, thus limiting the maximum DC drain voltages of the main transistors in the amplifier. The maximum DC drain voltages are related with maximum output power if the choke inductor in the amplifier is used. Therefore, a need to improve the amplifier performance of piezoelectric transducers exists for mobile ultrasound applications. In this study, a post-voltage-boost circuit-supported class-B amplifier used for mobile ultrasound applications was developed to increase the acoustic performance of piezoelectric transducers. The measured voltage of the post-voltage-boost circuit-supported class-B amplifier (62 VP-P) is higher than that of only a class-B amplifier (50 VP-P) at 15 MHz and 100 mVP-P input. By performing the pulse-echo measurement test, the echo signal with the post-voltage-boost circuit-supported class-B amplifier (10.39 mVP-P) was also noted to be higher than that with only a class-B amplifier (6.15 mVP-P). Therefore, this designed post-voltage-boost circuit can help improve the acoustic amplitude of piezoelectric transducers used for mobile ultrasound applications.

20.
Sensors (Basel) ; 20(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316339

RESUMO

In ultrasonic systems, power amplifiers are one of the most important electronic components used to supply output voltages to ultrasonic devices. If ultrasonic devices have low sensitivity and limited maximum allowable voltages, it can be quite challenging to detect the echo signal in the ultrasonic system itself. Therefore, the class-J power amplifier, which can generate high output power with high efficiency, is proposed for such ultrasonic device applications. The class-J power amplifier developed has a power efficiency of 63.91% and a gain of 28.16 dB at 25 MHz and 13.52 dBm input. The pulse-echo measurement method was used to verify the performance of the electronic components used in the ultrasonic system. The echo signal appearing with the discharged high voltage signal was measured. The amplitude of the first echo signal in the measured echo signal spectrum was 4.4 V and the total-harmonic-distortion (THD), including the fundamental signal and the second harmonic, was 22.35%. The amplitude of the second echo signal was 1.08 V, and the THD, including the fundamental signal and the second harmonic, was 12.45%. These results confirm that a class-J power amplifier can supply a very high output echo signal to an ultrasonic device.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa