Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 20(10): 1322-1334, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31427773

RESUMO

We report a new immunodeficiency disorder in mice caused by a viable hypomorphic mutation of Snrnp40, an essential gene encoding a subunit of the U5 small nuclear ribonucleoprotein (snRNP) complex of the spliceosome. Snrnp40 is ubiquitous but strongly expressed in lymphoid tissue. Homozygous mutant mice showed hypersusceptibility to infection by murine cytomegalovirus and multiple defects of lymphoid development, stability and function. Cell-intrinsic defects of hematopoietic stem cell differentiation also affected homozygous mutants. SNRNP40 deficiency in primary hematopoietic stem cells or T cells or the EL4 cell line increased the frequency of splicing errors, mostly intron retention, in several hundred messenger RNAs. Altered expression of proteins associated with immune cell function was also observed in Snrnp40-mutant cells. The immunological consequences of SNRNP40 deficiency presumably result from cumulative, moderate effects on processing of many different mRNA molecules and secondary reductions in the expression of critical immune proteins, yielding a syndromic immune disorder.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Infecções por Herpesviridae/imunologia , Síndromes de Imunodeficiência/imunologia , Muromegalovirus/fisiologia , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Spliceossomos/metabolismo , Linfócitos T/fisiologia , Alelos , Animais , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Suscetibilidade a Doenças , Infecções por Herpesviridae/genética , Síndromes de Imunodeficiência/genética , Linfopoese/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U5/genética
2.
Proc Natl Acad Sci U S A ; 119(18): e2200128119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482923

RESUMO

Null mutations of spliceosome components or cofactors are homozygous lethal in eukaryotes, but viable hypomorphic mutations provide an opportunity to understand the physiological impact of individual splicing proteins. We describe a viable missense allele (F181I) of Rnps1 encoding an essential regulator of splicing and nonsense-mediated decay (NMD), identified in a mouse genetic screen for altered immune cell development. Homozygous mice displayed a stem cell­intrinsic defect in hematopoiesis of all lineages due to excessive apoptosis induced by tumor necrosis factor (TNF)­dependent death signaling. Numerous transcript splice variants containing retained introns and skipped exons were detected at elevated frequencies in Rnps1F181I/F181I splenic CD8+ T cells and hematopoietic stem cells (HSCs), but NMD appeared normal. Strikingly, Tnf knockout rescued all hematopoietic cells to normal or near-normal levels in Rnps1F181I/F181I mice and dramatically reduced intron retention in Rnps1F181I/F181I CD8+ T cells and HSCs. Thus, RNPS1 is necessary for accurate splicing, without which disinhibited TNF signaling triggers hematopoietic cell death.


Assuntos
Linfócitos T CD8-Positivos , Ribonucleoproteínas , Animais , Linfócitos T CD8-Positivos/metabolismo , Hematopoese/genética , Homozigoto , Mamíferos/metabolismo , Camundongos , Receptores do Fator de Necrose Tumoral/metabolismo , Ribonucleoproteínas/metabolismo , Deleção de Sequência , Fatores de Necrose Tumoral/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260399

RESUMO

Forward genetic studies use meiotic mapping to adduce evidence that a particular mutation, normally induced by a germline mutagen, is causative of a particular phenotype. Particularly in small pedigrees, cosegregation of multiple mutations, occasional unawareness of mutations, and paucity of homozygotes may lead to erroneous declarations of cause and effect. We sought to improve the identification of mutations causing immune phenotypes in mice by creating Candidate Explorer (CE), a machine-learning software program that integrates 67 features of genetic mapping data into a single numeric score, mathematically convertible to the probability of verification of any putative mutation-phenotype association. At this time, CE has evaluated putative mutation-phenotype associations arising from screening damaging mutations in ∼55% of mouse genes for effects on flow cytometry measurements of immune cells in the blood. CE has therefore identified more than half of genes within which mutations can be causative of flow cytometric phenovariation in Mus musculus The majority of these genes were not previously known to support immune function or homeostasis. Mouse geneticists will find CE data informative in identifying causative mutations within quantitative trait loci, while clinical geneticists may use CE to help connect causative variants with rare heritable diseases of immunity, even in the absence of linkage information. CE displays integrated mutation, phenotype, and linkage data, and is freely available for query online.


Assuntos
Mutação em Linhagem Germinativa/genética , Leucócitos/metabolismo , Aprendizado de Máquina , Meiose/genética , Algoritmos , Animais , Automação , Feminino , Citometria de Fluxo , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Probabilidade , Reprodutibilidade dos Testes , Software
4.
Allergy ; 76(4): 1095-1108, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32810290

RESUMO

BACKGROUND: Atopy, the overall tendency to become sensitized to an allergen, is heritable but seldom ascribed to mutations within specific genes. Atopic individuals develop abnormally elevated IgE responses to immunization with potential allergens. To gain insight into the genetic causes of atopy, we carried out a forward genetic screen for atopy in mice. METHODS: We screened mice carrying homozygous and heterozygous N-ethyl-N-nitrosourea (ENU)-induced germline mutations for aberrant antigen-specific IgE and IgG1 production in response to immunization with the model allergen papain. Candidate genes were validated by independent gene mutation. RESULTS: Of 31 candidate genes selected for investigation, the effects of mutations in 23 genes on papain-specific IgE or IgG1 were verified. Among the 20 verified genes influencing the IgE response, eight were necessary for the response, while 12 repressed IgE. Nine genes were not previously implicated in the IgE response. Fifteen genes encoded proteins contributing to IgE class switch recombination or B-cell receptor signaling. The precise roles of the five remaining genes (Flcn, Map1lc3b, Me2, Prkd2, and Scarb2) remain to be determined. Loss-of-function mutations in nine of the 12 genes limiting the IgE response were dominant or semi-dominant for the IgE phenotype but did not cause immunodeficiency in the heterozygous state. Using damaging allele frequencies for the corresponding human genes and in silico simulations (Monte Carlo) of undiscovered atopy mutations, we estimated the percentage of humans with heterozygous atopy risk mutations. CONCLUSIONS: Up to 37% of individuals may be heterozygous carriers for at least one dominant atopy risk mutation.


Assuntos
Hipersensibilidade Imediata , Imunoglobulina E , Alérgenos , Animais , Imunoglobulina G , Camundongos , Mutação
5.
Proc Natl Acad Sci U S A ; 115(49): E11523-E11531, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30442666

RESUMO

The SMCR8-WDR41-C9ORF72 complex is a regulator of autophagy and lysosomal function. Autoimmunity and inflammatory disease have been ascribed to loss-of-function mutations of Smcr8 or C9orf72 in mice. In humans, autoimmunity has been reported to precede amyotrophic lateral sclerosis caused by mutations of C9ORF72 However, the cellular and molecular mechanisms underlying autoimmunity and inflammation caused by C9ORF72 or SMCR8 deficiencies remain unknown. Here, we show that splenomegaly, lymphadenopathy, and activated circulating T cells observed in Smcr8-/- mice were rescued by triple knockout of the endosomal Toll-like receptors (TLRs) TLR3, TLR7, and TLR9. Myeloid cells from Smcr8-/- mice produced excessive inflammatory cytokines in response to endocytosed TLR3, TLR7, or TLR9 ligands administered in the growth medium and in response to TLR2 or TLR4 ligands internalized by phagocytosis. These defects likely stem from prolonged TLR signaling caused by accumulation of LysoTracker-positive vesicles and by delayed phagosome maturation, both of which were observed in Smcr8-/- macrophages. Smcr8-/- mice also showed elevated susceptibility to dextran sodium sulfate-induced colitis, which was not associated with increased TLR3, TLR7, or TLR9 signaling. Deficiency of WDR41 phenocopied loss of SMCR8. Our findings provide evidence that excessive endosomal TLR signaling resulting from prolonged ligand-receptor contact causes inflammatory disease in SMCR8-deficient mice.


Assuntos
Proteína C9orf72/metabolismo , Proteínas de Transporte/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Toll-Like/metabolismo , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Proteínas Relacionadas à Autofagia , Proteína C9orf72/genética , Proteínas de Transporte/genética , Colite/induzido quimicamente , Sulfato de Dextrana , Regulação da Expressão Gênica , Hematopoese/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Mutação , Transdução de Sinais/imunologia , Receptores Toll-Like/genética
6.
Proc Natl Acad Sci U S A ; 114(26): E5197-E5206, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607088

RESUMO

The recessive N-ethyl-N-nitrosourea-induced phenotype toku is characterized by delayed hair growth, progressive hair loss, and excessive accumulation of dermal cholesterol, triglycerides, and ceramides. The toku phenotype was attributed to a null allele of Gk5, encoding glycerol kinase 5 (GK5), a skin-specific kinase expressed predominantly in sebaceous glands. GK5 formed a complex with the sterol regulatory element-binding proteins (SREBPs) through their C-terminal regulatory domains, inhibiting SREBP processing and activation. In Gk5toku/toku mice, transcriptionally active SREBPs accumulated in the skin, but not in the liver; they were localized to the nucleus and led to elevated lipid synthesis and subsequent hair growth defects. Similar defective hair growth was observed in kinase-inactive GK5 mutant mice. Hair growth defects of homozygous toku mice were partially rescued by treatment with the HMG-CoA reductase inhibitor simvastatin. GK5 exists as part of a skin-specific regulatory mechanism for cholesterol biosynthesis, independent of cholesterol regulation elsewhere in the body.


Assuntos
Glicerol Quinase/metabolismo , Lipídeos/biossíntese , Processamento de Proteína Pós-Traducional , Pele/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Glicerol Quinase/genética , Lipídeos/genética , Camundongos , Camundongos Knockout , Domínios Proteicos , Sinvastatina/farmacologia , Proteínas de Ligação a Elemento Regulador de Esterol/genética
7.
Proc Natl Acad Sci U S A ; 113(42): E6418-E6426, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27708159

RESUMO

We describe a metabolic disorder characterized by lipodystrophy, hepatic steatosis, insulin resistance, severe diabetes, and growth retardation observed in mice carrying N-ethyl-N-nitrosourea (ENU)-induced mutations. The disorder was ascribed to a mutation of kelch repeat and BTB (POZ) domain containing 2 (Kbtbd2) and was mimicked by a CRISPR/Cas9-targeted null allele of the same gene. Kbtbd2 encodes a BTB-Kelch family substrate recognition subunit of the Cullin-3-based E3 ubiquitin ligase. KBTBD2 targeted p85α, the regulatory subunit of the phosphoinositol-3-kinase (PI3K) heterodimer, causing p85α ubiquitination and proteasome-mediated degradation. In the absence of KBTBD2, p85α accumulated to 30-fold greater levels than in wild-type adipocytes, and excessive p110-free p85α blocked the binding of p85α-p110 heterodimers to IRS1, interrupting the insulin signal. Both transplantation of wild-type adipose tissue and homozygous germ line inactivation of the p85α-encoding gene Pik3r1 rescued diabetes and hepatic steatosis phenotypes of Kbtbd2-/- mice. Kbtbd2 was down-regulated in diet-induced obese insulin-resistant mice in a leptin-dependent manner. KBTBD2 is an essential regulator of the insulin-signaling pathway, modulating insulin sensitivity by limiting p85α abundance.


Assuntos
Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Dieta/efeitos adversos , Predisposição Genética para Doença , Resistência à Insulina , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/transplante , Animais , Glicemia , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Culina/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Estudos de Associação Genética , Genótipo , Insulina/sangue , Resistência à Insulina/genética , Lipodistrofia/etiologia , Lipodistrofia/metabolismo , Lipodistrofia/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Obesidade/etiologia , Obesidade/patologia , Fenótipo , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Ubiquitinação
8.
Curr Microbiol ; 75(1): 11-19, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28852850

RESUMO

Triterpenoid saponin derivatives oleanolic acid (OA) and ursolic acid (UA), but not betulinic acid (BA), were previously found to have strong antimicrobial activity against Streptococcus mutans. OA and UA inhibited the transcription of genes related to peptidoglycan biosynthesis, thereby preventing bacterial growth. However, it is not clear whether this is the only pathway involved in the antimicrobial activity of these compounds against S. mutans. Therefore, we used quantitative real-time PCR (qPCR) and microarray analyses to examine the expression of genes related to essential metabolic pathways in S. mutans UA159 following incubation with OA, UA, or BA. An oligonucleotide array consisting of 5363 probes was designed to survey 1928 of the 1963 genes in the genome of S. mutans UA159. Genes that showed >2-fold changes in expression in response to the treatment conditions were annotated, and selected target genes involved in central metabolism were analyzed by qPCR. Microarray analysis confirmed that the gene expression patterns of the OA- and UA-treated cells differed from that of the BA-treated culture, indicating differences in the antimicrobial mechanism. In particular, the expression of pfk and pykF, coding for glycolysis regulatory proteins phosphofructokinase and pyruvate kinase, respectively, were significantly decreased in the OA and UA groups (P < 0.05), as were genes involved in fatty acid and amino acid synthesis. In addition, the microarray analysis confirmed previous qPCR results showing that peptidoglycan synthesis is down-regulated in the OA- and UA-treated groups. OA and UA also appear to decrease the generation of organic acids by S. mutans UA159, which would have an anticaries effect. Overall, these findings suggest that OA and UA affect multiple genes involved in the central metabolism of S. mutans, with inhibition of glycolysis, fatty acid synthesis, amino acid synthesis, and peptidoglycan synthesis, all contributing to their antimicrobial activity.


Assuntos
Antibacterianos/farmacologia , Ácido Oleanólico/farmacologia , Streptococcus mutans/efeitos dos fármacos , Triterpenos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Triterpenos Pentacíclicos , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Ácido Betulínico , Ácido Ursólico
9.
Caries Res ; 49(1): 78-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25531232

RESUMO

The objective of the study was to investigate the antimicrobial effects of purified single compounds from ethanol-extracted licorice root on Streptococcus mutans. The crude licorice root extract (CLE) was obtained from Glycyrrhiza uralensis, which was subjected to column chromatography to separate compounds. Purified compounds were identified by mass spectrometry and nuclear magnetic resonance. Antimicrobial activities of purified compounds from CLE were evaluated by determining the minimum inhibitory concentration and by performing time-kill kinetics. The inhibitory effects of the compounds on biofilm development were evaluated using crystal violet assay and confocal microscopy. Cell toxicity of substances to normal human gingival fibroblast (NHGF) cells was tested using a methyl thiazolyl tetrazolium assay. Chlorhexidine digluconate (CHX) was used in the control group. Three antimicrobial flavonoids, 1-methoxyficifolinol, licorisoflavan A, and 6,8-diprenylgenistein, were isolated from the CLE. We found that the three flavonoids and CHX had bactericidal effects on S. mutans UA159 at the concentration of ≥4 and ≥1 µg/ml, respectively. The purified compounds completely inhibited biofilm development of S. mutans UA159 at concentrations over 4 µg/ml, which was equivalent to 2 µg/ml of CHX. Confocal analysis showed that biofilms were sparsely scattered in the presence of over 4 µg/ml of the purified compounds. However, the three compounds purified from CLE showed less cytotoxic effects on NHGF cells than CHX at these biofilm-inhibitory concentrations. Our results suggest that purified flavonoids from CLE can be useful in developing oral hygiene products, such as gargling solutions and dentifrices for preventing dental caries.


Assuntos
Anti-Infecciosos/farmacologia , Benzofuranos/farmacologia , Benzopiranos/farmacologia , Genisteína/análogos & derivados , Glycyrrhiza uralensis , Extratos Vegetais/farmacologia , Streptococcus mutans/efeitos dos fármacos , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos Locais/farmacologia , Benzopiranos/administração & dosagem , Biofilmes/efeitos dos fármacos , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Fibroblastos/efeitos dos fármacos , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Genisteína/administração & dosagem , Genisteína/farmacologia , Violeta Genciana , Gengiva/citologia , Gengiva/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Microscopia Confocal , Extratos Vegetais/administração & dosagem , Raízes de Plantas , Streptococcus sobrinus/efeitos dos fármacos , Sais de Tetrazólio , Tiazóis
10.
Sci Adv ; 10(9): eadj9797, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427739

RESUMO

We used N-ethyl-N-nitrosurea-induced germline mutagenesis combined with automated meiotic mapping to identify specific systolic blood pressure (SBP) and heart rate (HR) determinant loci. We analyzed 43,627 third-generation (G3) mice from 841 pedigrees to assess the effects of 45,378 variant alleles within 15,760 genes, in both heterozygous and homozygous states. We comprehensively tested 23% of all protein-encoding autosomal genes and found 87 SBP and 144 HR (with 7 affecting both) candidates exhibiting detectable hypomorphic characteristics. Unexpectedly, only 18 of the 87 SBP genes were previously known, while 26 of the 144 genes linked to HR were previously identified. Furthermore, we confirmed the influence of two genes on SBP regulation and three genes on HR control through reverse genetics. This underscores the importance of our research in uncovering genes associated with these critical cardiovascular risk factors and illustrate the effectiveness of germline mutagenesis for defining key determinants of polygenic phenotypes that must be studied in an intact organism.


Assuntos
Etilnitrosoureia , Camundongos , Animais , Pressão Sanguínea/genética , Frequência Cardíaca/genética , Mutagênese , Etilnitrosoureia/toxicidade , Alelos
11.
Nat Med ; 12(11): 1253-5, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17072310

RESUMO

The cycle of gallbladder filling and emptying controls the flow of bile into the intestine for digestion. Here we show that fibroblast growth factor-15, a hormone made by the distal small intestine in response to bile acids, is required for gallbladder filling. These studies demonstrate that gallbladder filling is actively regulated by an endocrine pathway and suggest a postprandial timing mechanism that controls gallbladder motility.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Vesícula Biliar/fisiologia , Animais , Colecistocinina/sangue , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Vesícula Biliar/metabolismo , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , RNA Mensageiro/genética
12.
Curr Microbiol ; 66(4): 414-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23263257

RESUMO

On the basis of the DNA-DNA hybridization patterns and phenotypic characteristics, Fusobacterium nucleatum was classified into five subspecies. Previous studies have suggested that F. nucleatum subsp. vincentii is genetically similar to F. nucleatum subsp. fusiforme. The aim of this study was to investigate the possibility of classifying these two subspecies into a single subspecies by phylogenetic analysis using a single sequence (24,715 bp) concatenated 22 housekeeping genes of eight F. nucleatum strains including type strains of five F. nucleatum subspecies. The phylogenetic analysis indicated that F. nucleatum subsp. vincentii and F. nucleatum subsp. fusiforme were clustered in the same group and each strain of other F. nucleatum subspecies were also separated into the same cluster. These results suggested that F. nucleatum subsp. fusiforme and F. nucleatum subsp. vincentii can be classified into a single subspecies. F. nucleatum subsp. vincentii was early published name; therefore, F. nucleatum subsp. fusiforme Gharbia and Shah 1992 can be regarded as a later synonym of F. nucleatum subsp. vincentii Dzink et al. 1990.


Assuntos
Fusobacterium nucleatum/classificação , Proteínas de Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Fusobacterium nucleatum/genética , Filogenia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
13.
Cell Metab ; 35(3): 429-437.e5, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889282

RESUMO

Animals that consume fermenting fruit and nectar are at risk of exposure to ethanol and the detrimental effects of inebriation. In this report, we show that the hormone FGF21, which is strongly induced by ethanol in murine and human liver, stimulates arousal from intoxication without changing ethanol catabolism. Mice lacking FGF21 take longer than wild-type littermates to recover their righting reflex and balance following ethanol exposure. Conversely, pharmacologic FGF21 administration reduces the time needed for mice to recover from ethanol-induced unconsciousness and ataxia. FGF21 did not counteract sedation caused by ketamine, diazepam, or pentobarbital, indicating specificity for ethanol. FGF21 mediates its anti-intoxicant effects by directly activating noradrenergic neurons in the locus coeruleus region, which regulates arousal and alertness. These results suggest that this FGF21 liver-brain pathway evolved to protect against ethanol-induced intoxication and that it might be targeted pharmaceutically for treating acute alcohol poisoning.


Assuntos
Intoxicação Alcoólica , Humanos , Animais , Camundongos , Etanol/toxicidade , Fatores de Crescimento de Fibroblastos/metabolismo , Encéfalo/metabolismo
14.
J Bacteriol ; 194(22): 6322-3, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23105064

RESUMO

Fusobacterium nucleatum is classified into five subspecies. F. nucleatum ChDC F128 was isolated from a periodontitis lesion and proposed as a new subspecies based on the comparison of the nucleotide sequences of the RNA polymerase beta subunit and zinc protease genes. Here, we report the draft genome sequence of the strain.


Assuntos
Infecções por Fusobacterium/microbiologia , Fusobacterium nucleatum/genética , Genoma Bacteriano , Periodontite/microbiologia , Fusobacterium nucleatum/classificação , Humanos , Dados de Sequência Molecular
15.
J Bacteriol ; 194(19): 5445-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22965077

RESUMO

Fusobacterium nucleatum, one of the major causative bacteria of periodontitis, is classified into five subspecies (nucleatum, polymorphum, vincentii, animalis, and fusiforme) on the basis of the several phenotypic characteristics and DNA homology. This is the first report of the draft genome sequence of F. nucleatum subsp. fusiforme ATCC 51190(T).


Assuntos
Fusobacterium nucleatum/classificação , Fusobacterium nucleatum/genética , Genoma Bacteriano , Dados de Sequência Molecular
16.
Cell Metab ; 34(11): 1860-1874.e4, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228616

RESUMO

Using random germline mutagenesis in mice, we identified a viable hypomorphic allele (boh) of the transcription-factor-encoding gene Ovol2 that resulted in obesity, which initially developed with normal food intake and physical activity but decreased energy expenditure. Fat weight was dramatically increased, while lean weight was reduced in 12-week-old boh homozygous mice, culminating by 24 weeks in massive obesity, hepatosteatosis, insulin resistance, and diabetes. The Ovol2boh/boh genotype augmented obesity in Lepob/ob mice, and pair-feeding failed to normalize obesity in Ovol2boh/boh mice. OVOL2-deficient mice were extremely cold intolerant. OVOL2 is essential for brown/beige adipose tissue-mediated thermogenesis. In white adipose tissues, OVOL2 limited adipogenesis by blocking C/EBPα engagement of its transcriptional targets. Overexpression of OVOL2 in adipocytes of mice fed with a high-fat diet reduced total body and liver fat and improved insulin sensitivity. Our data reveal that OVOL2 plays dual functions in thermogenesis and adipogenesis to maintain energy balance.


Assuntos
Adipogenia , Resistência à Insulina , Camundongos , Animais , Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Termogênese/genética , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Dieta Hiperlipídica , Resistência à Insulina/genética , Metabolismo Energético/genética , Mutação , Camundongos Endogâmicos C57BL
17.
Mol Pharmacol ; 80(6): 1147-55, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21917910

RESUMO

The vitamin D receptor (VDR) mediates vitamin D signaling in numerous physiological and pharmacological processes, including bone and calcium metabolism, cellular growth and differentiation, immunity, and cardiovascular function. Although transcriptional regulation by VDR has been investigated intensively, an understanding of ligand-selective dynamic VDR conformations remains elusive. Here, we examined ligand-dependent dynamic interactions of VDR with retinoid X receptor (RXR), steroid receptor coactivator 1 (SRC-1), and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) in cells using fluorescence resonance energy transfer (FRET) and chromatin immunoprecipitation (ChIP) assays. We compared the effects of 1α,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], lithocholic acid (LCA), and (25R)-25-adamantyl-1α,25-dihydroxy-2-methylene-22,23-didehydro-19,26,27-trinor-20-epivitamin D(3) (ADTT), a partial agonist/antagonist vitamin D derivative. In the absence of ligand, VDR homodimers were preferred to RXR heterodimers and were associated with SMRT. 1,25(OH)(2)D(3) induced heterodimerization with RXR, dissociation of SMRT, and association of SRC-1. LCA and ADTT induced those effects to a lesser extent at concentrations that did not induce expression of the VDR target gene CYP24A1 in human embryonic kidney (HEK) 293 cells. Unlike in HEK293 cells, ADTT increased CYP24A1 expression in HCT116 cells and increased the association of VDR and SMRT on the CYP24A1 promoter. The results indicate that ligand-selective conformation may lead to unique cofactor complex formation in a cell context-dependent manner. The combination of FRET and ChIP assays is a powerful tool useful in understanding ligand-selective dynamic VDR conformations and the development of selective VDR modulators.


Assuntos
Coenzimas/metabolismo , Receptores de Calcitriol/metabolismo , Receptores X de Retinoides/metabolismo , Animais , Células COS , Linhagem Celular Transformada , Chlorocebus aethiops , Coenzimas/química , Células HCT116 , Células HEK293 , Humanos , Ligantes , Ácido Litocólico/química , Ácido Litocólico/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica/fisiologia , Conformação Proteica , Receptores de Calcitriol/química , Receptores X de Retinoides/química
18.
Biol Pharm Bull ; 34(6): 912-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21628894

RESUMO

Adipocyte differentiation has been a target in anti-obesity strategies and is known to be closely related to lipid metabolism. Ceramide, a major sphingolipid metabolite, has been implicated in differentiation. In this study, we investigated whether ceramide biosynthesis is related to adipogenesis in 3T3-L1 cells. Preadipocytes can be differentiated synchronously by a mixture of adipogenic inducers including 3-isobutyl-1-methylxanthine, dexamethasone and insulin. The number of lipid droplets and the triglyceride content, which are differentiation biomarkers, gradually increased during adipogenesis. Interestingly, ceramide and sphingosine contents in the differentiated cells were decreased compared to those in preadipocytes. When the preadipocytes were treated with an 3-isobutyl-1-methylxanthine- or dexamethasone- or insulin-deficient mixture of inducers, the cellular ceramide levels were significantly increased compared with those in cells treated with the complete set of inducers. When preadipocytes were treated with 0, 0.1 or 1 µg/ml insulin along with 3-isobutyl-1-methylxanthine and dexamethasone, the ceramide levels were decreased and the triglyceride content was increased in a concentration-dependent manner. When the cells were treated with epigallocatechin gallate, an adipocyte differentiation inhibitor, during adipogenesis, the ceramide levels of adipocytes were increased and the fat content was decreased. In conclusion, our findings demonstrate that cellular ceramide levels are inversely correlated with adipocyte differentiation.


Assuntos
Adipócitos/metabolismo , Adipogenia , Ceramidas/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Terapia de Alvo Molecular , Obesidade/tratamento farmacológico , Esfingosina/metabolismo , Triglicerídeos/metabolismo
19.
Cell Metab ; 2(4): 217-25, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16213224

RESUMO

The liver and intestine play crucial roles in maintaining bile acid homeostasis. Here, we demonstrate that fibroblast growth factor 15 (FGF15) signals from intestine to liver to repress the gene encoding cholesterol 7alpha-hydroxylase (CYP7A1), which catalyzes the first and rate-limiting step in the classical bile acid synthetic pathway. FGF15 expression is stimulated in the small intestine by the nuclear bile acid receptor FXR and represses Cyp7a1 in liver through a mechanism that involves FGF receptor 4 (FGFR4) and the orphan nuclear receptor SHP. Mice lacking FGF15 have increased hepatic CYP7A1 mRNA and protein levels and corresponding increases in CYP7A1 enzyme activity and fecal bile acid excretion. These studies define FGF15 and FGFR4 as components of a gut-liver signaling pathway that synergizes with SHP to regulate bile acid synthesis.


Assuntos
Ácidos e Sais Biliares/metabolismo , Circulação Êntero-Hepática/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Homeostase , Transdução de Sinais , Animais , Células CACO-2 , Colesterol 7-alfa-Hidroxilase/biossíntese , Clonagem Molecular , Proteínas de Ligação a DNA/metabolismo , Circulação Êntero-Hepática/efeitos dos fármacos , Epitélio/metabolismo , Fatores de Crescimento de Fibroblastos/deficiência , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/farmacologia , Perfilação da Expressão Gênica , Homeostase/efeitos dos fármacos , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citologia , Fígado/enzimologia , Masculino , Camundongos , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
20.
Mol Pharmacol ; 76(6): 1360-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19786558

RESUMO

The basic helix-loop-helix proteins differentiated embryo chondrocyte 1 (DEC1) and DEC2 are involved in circadian rhythm control. Because the metabolism of dietary nutrients has been linked to circadian regulation, we examined the effect of DEC1 and DEC2 on the function of the metabolite-sensing nuclear receptors, ligand-dependent transcription factors, including retinoid X receptor (RXR) and liver X receptor (LXR). Transfection assays showed that DEC1 and DEC2 repressed ligand-dependent transactivation by RXR. Knockdown of endogenous DEC1 and DEC2 expression with small interfering RNAs augmented ligand-dependent RXRalpha transactivation. DEC1 and DEC2 interacted directly with RXRalpha, and ligand addition enhanced their association. DEC1 and DEC2 modified interaction of RXRalpha with cofactor proteins. Transfection assays using DEC1 and DEC2 mutants revealed that the C-terminal region of DEC2 is required for repression and that an LXXLL motif in DEC1 and DEC2 is necessary for RXRalpha repression. DEC1 and DEC2 repressed the induction of LXR target genes, associated with the promoter of an LXR target gene, and dissociated from the promoter with ligand treatment. Knockdown of endogenous DEC1 and DEC2 enhanced the LXR target gene expression in hepatocytes. Expression of Dec1, Dec2, and Srebp-1c showed a circadian rhythm in the liver of mice, whereas that of Lxralpha, Lxrbeta, and Rxralpha was not rhythmic. DEC1 and DEC2 also repressed the transactivation of other RXR heterodimers, such as farnesoid X receptor, vitamin D receptor, and retinoic acid receptor. Thus, the repressor function of DEC1 and DEC2 may be extended to other RXR heterodimer nuclear receptors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Condrócitos/fisiologia , Receptores X de Retinoides/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Linhagem Celular , Regulação para Baixo , Glutationa Transferase/biossíntese , Histona Desacetilases/fisiologia , Proteínas de Homeodomínio/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor X Retinoide alfa/biossíntese , Receptor X Retinoide alfa/fisiologia , Receptores X de Retinoides/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/fisiologia , Ativação Transcricional/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa