Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr ; 153(3): 870-879, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813578

RESUMO

BACKGROUND: Mice lacking IL-10 are prone to gut inflammation. Additionally, decreased production of short-chain fatty acids (SCFAs) plays a significant role in the high-fat (HF) diet-induced loss of gut epithelial integrity. We have previously shown that wheat germ (WG) supplementation increased ileal expression of IL-22, an important cytokine in maintaining gut epithelial homeostasis. OBJECTIVES: This study investigated the effects of WG supplementation on gut inflammation and epithelial integrity in IL-10 knockout mice fed a pro-atherogenic diet. METHODS: Eight-week-old female C57BL/6 wild type mice were fed a control diet (10% fat kcal), and age-matched knockout mice were randomly assigned to 1 of 3 diets (n = 10/group): control, high-fat high-cholesterol (HFHC) [(43.4% fat kcal (∼49% saturated fat, 1% cholesterol)], or HFHC + 10% WG (HFWG) for 12 wk. Fecal SCFAs and total indole, ileal, and serum proinflammatory cytokines, gene or protein expression of tight junctions, and immunomodulatory transcription factors were assessed. Data were analyzed by 1-way ANOVA, and P < 0.05 was considered statistically significant. RESULTS: Fecal acetate, total SCFAs, and indole increased (P < 0.05) by at least 20% in HFWG compared with the other groups. WG increased (P < 0.0001, 2-fold) ileal Il22 (interleukin 22) to Il22ra2 (interleukin 22 receptor, alpha 2) mRNA ratio and prevented the HFHC diet-mediated increase in ileal protein expression of indoleamine 2,3 dioxygenase and pSTAT3 (phosphorylated signal transducer and activator of transcription 3). WG also prevented the HFHC diet-mediated reduction (P < 0.05) in ileal protein expression of the aryl hydrocarbon receptor and the tight junction protein, zonula occludens-1. Serum and ileal concentrations of the proinflammatory cytokine, IL-17, were lower (P < 0.05) by at least 30% in the HFWG group than in the HFHC group. CONCLUSIONS: Our findings demonstrate that the anti-inflammatory potential of WG in IL-10 KO mice consuming an atherogenic diet is partly attributable to its effects on the IL-22 signaling and pSTAT3-mediated production of T helper 17 proinflammatory cytokines.


Assuntos
Interleucina-10 , Triticum , Feminino , Camundongos , Animais , Interleucina-10/genética , Interleucina-10/metabolismo , Dieta Aterogênica , Camundongos Knockout , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Suplementos Nutricionais
2.
Cell Commun Signal ; 20(1): 76, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637461

RESUMO

BACKGROUND: Acute kidney injury (AKI) is associated with a severe decline in kidney function caused by abnormalities within the podocytes' glomerular matrix. Recently, AKI has been linked to alterations in glycolysis and the activity of glycolytic enzymes, including pyruvate kinase M2 (PKM2). However, the contribution of this enzyme to AKI remains largely unexplored. METHODS: Cre-loxP technology was used to examine the effects of PKM2 specific deletion in podocytes on the activation status of key signaling pathways involved in the pathophysiology of AKI by lipopolysaccharides (LPS). In addition, we used lentiviral shRNA to generate murine podocytes deficient in PKM2 and investigated the molecular mechanisms mediating PKM2 actions in vitro. RESULTS: Specific PKM2 deletion in podocytes ameliorated LPS-induced protein excretion and alleviated LPS-induced alterations in blood urea nitrogen and serum albumin levels. In addition, PKM2 deletion in podocytes alleviated LPS-induced structural and morphological alterations to the tubules and to the brush borders. At the molecular level, PKM2 deficiency in podocytes suppressed LPS-induced inflammation and apoptosis. In vitro, PKM2 knockdown in murine podocytes diminished LPS-induced apoptosis. These effects were concomitant with a reduction in LPS-induced activation of ß-catenin and the loss of Wilms' Tumor 1 (WT1) and nephrin. Notably, the overexpression of a constitutively active mutant of ß-catenin abolished the protective effect of PKM2 knockdown. Conversely, PKM2 knockdown cells reconstituted with the phosphotyrosine binding-deficient PKM2 mutant (K433E) recapitulated the effect of PKM2 depletion on LPS-induced apoptosis, ß-catenin activation, and reduction in WT1 expression. CONCLUSIONS: Taken together, our data demonstrates that PKM2 plays a key role in podocyte injury and suggests that targetting PKM2 in podocytes could serve as a promising therapeutic strategy for AKI. TRIAL REGISTRATION: Not applicable. Video abstract.


Assuntos
Injúria Renal Aguda , Leucemia Mieloide Aguda , Podócitos , Injúria Renal Aguda/metabolismo , Animais , Leucemia Mieloide Aguda/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Piruvato Quinase/farmacologia , beta Catenina/metabolismo
3.
FASEB J ; 34(9): 10702-12725, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32716562

RESUMO

Brain zinc dysregulation is linked to many neurological disorders. However, the mechanisms regulating brain zinc homeostasis are poorly understood. We performed secondary analyses of brain MRI GWAS and exome sequencing data from adults in the UK Biobank. Coding ZIP12 polymorphisms in zinc transporter ZIP12 (SLC39A12) were associated with altered brain susceptibility weighted MRI (swMRI). Conditional and joint association analyses revealed independent GWAS signals in linkage disequilibrium with 2 missense ZIP12 polymorphisms, rs10764176 and rs72778328, with reduced zinc transport activity. ZIP12 rare coding variants predicted to be deleterious were associated with similar impacts on brain swMRI. In Neuro-2a cells, ZIP12 deficiency by short hairpin RNA (shRNA) depletion or CRISPR/Cas9 genome editing resulted in impaired mitochondrial function, increased superoxide presence, and detectable protein carbonylation. Inhibition of Complexes I and IV of the electron transport chain reduced neurite outgrowth in ZIP12 deficient cells. Transcriptional coactivator PGC-1α, mitochondrial superoxide dismutase (SOD2), and chemical antioxidants α-tocopherol, MitoTEMPO, and MitoQ restored neurite extension impaired by ZIP12 deficiency. Mutant forms of α-synuclein and tau linked to familial Parkinson's disease and frontotemporal dementia, respectively, reduced neurite outgrowth in cells deficient in ZIP12. Zinc and ZIP12 may confer resilience against neurological diseases or premature aging of the brain.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte de Cátions/genética , Imageamento por Ressonância Magnética/métodos , Mitocôndrias/genética , Animais , Encéfalo/diagnóstico por imagem , Células CHO , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Humanos , Camundongos , Mitocôndrias/metabolismo , Crescimento Neuronal/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Polimorfismo de Nucleotídeo Único , Interferência de RNA , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Zinco/metabolismo
4.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503959

RESUMO

Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Reprogramação Celular , Metabolismo Energético , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Animais , Proteínas de Transporte/antagonistas & inibidores , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Reprogramação Celular/genética , Suscetibilidade a Doenças , Desenvolvimento de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Metabolismo Energético/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Homeostase , Humanos , Proteínas de Membrana/antagonistas & inibidores , Mutação , Transporte Proteico , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Interferência de RNA , RNA Longo não Codificante/genética , Pesquisa , Proteínas de Ligação a Hormônio da Tireoide
5.
J Nutr ; 150(10): 2687-2698, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32810865

RESUMO

BACKGROUND: Astaxanthin is a red lipophilic carotenoid that is often undetectable in human plasma due to the limited supply in typical Western diets. Despite its presence at lower than detectable concentrations, previous clinical feeding studies have reported that astaxanthin exhibits potent antioxidant properties. OBJECTIVE: We examined astaxanthin accumulation and its effects on gut microbiota, inflammation, and whole-body metabolic homeostasis in wild-type C57BL/6 J (WT) and ß-carotene oxygenase 2 (BCO2) knockout (KO) mice. METHODS: Six-wk-old male and female BCO2 KO and WT mice were provided with either nonpurified AIN93M (e.g., control diet) or the control diet supplemented with 0.04% astaxanthin (wt/wt) ad libitum for 8 wk. Whole-body energy expenditure was measured by indirect calorimetry. Feces were collected from individual mice for short-chain fatty acid assessment. Hepatic astaxanthin concentrations and liver metabolic markers, cecal gut microbiota profiling, inflammation markers in colonic lamina propria, and plasma samples were assessed. Data were analyzed by 3-way ANOVA followed by Tukey's post hoc analysis. RESULTS: BCO2 KO but not WT mice fed astaxanthin had ∼10-fold more of this compound in liver than controls (P < 0.05). In terms of the microbiota composition, deletion of BCO2 was associated with a significantly increased abundance of Mucispirillum schaedleri in mice regardless of gender. In addition to more liver astaxanthin in male KO compared with WT mice fed astaxanthin, the abundance of gut Akkermansia muciniphila was 385% greater, plasma glucagon-like peptide 1 was 27% greater, plasma glucagon and IL-1ß were 53% and 30% lower, respectively, and colon NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation was 23% lower (all P < 0.05) in male KO mice than the WT mice. CONCLUSIONS: Astaxanthin affects the gut microbiota composition in both genders, but the association with reductions in local and systemic inflammation, oxidative stress, and improvement of metabolic homeostasis only occurs in male mice.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Dieta/veterinária , Suplementos Nutricionais , Dioxigenases/genética , Dioxigenases/metabolismo , Feminino , Homeostase/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Xantofilas/administração & dosagem , Xantofilas/farmacologia
6.
Int J Mol Sci ; 21(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942535

RESUMO

The tumor suppressor gene TP53 is the most commonly mutated gene in human cancer. In addition to loss of tumor suppressor functions, mutations in TP53 promote cancer progression by altering cellular iron acquisition and metabolism. A newly identified role for TP53 in the coordination of iron homeostasis and cancer cell survival lies in the ability for TP53 to protect against ferroptosis, a form of iron-mediated cell death. The purpose of this study was to determine the extent to which TP53 mutation status affects the cellular response to ferroptosis induction. Using H1299 cells, which are null for TP53, we generated cell lines expressing either a tetracycline inducible wild-type (WT) TP53 gene, or a representative mutated TP53 gene from six exemplary "hotspot" mutations in the DNA binding domain (R273H, R248Q, R282W, R175H, G245S, and R249S). TP53 mutants (R273H, R248Q, R175H, G245S, and R249S) exhibited increased sensitivity ferroptosis compared to cells expressing WT TP53. As iron-mediated lipid peroxidation is critical for ferroptosis induction, we hypothesized that iron acquisition pathways would be upregulated in mutant TP53-expressing cells. However, only cells expressing the R248Q, R175H, and G245S TP53 mutation types exhibited statistically significant increases in spontaneous iron regulatory protein (IRP) RNA binding activity following ferroptosis activation. Moreover, changes in the expression of downstream IRP targets were inconsistent with the observed differences in sensitivity to ferroptosis. These findings reveal that canonical iron regulatory pathways are bypassed during ferroptotic cell death. These results also indicate that induction of ferroptosis may be an effective therapeutic approach for tumor cells expressing distinct TP53 mutation types.


Assuntos
Ferroptose/genética , Proteínas Reguladoras de Ferro/genética , Ferro/metabolismo , Mutação/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Reguladoras de Ferro/metabolismo , Peroxidação de Lipídeos/genética , Proteínas de Ligação a RNA/genética , Regulação para Cima/genética
7.
J Nutr ; 149(7): 1107-1115, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31162575

RESUMO

BACKGROUND: A link between high-fat diet consumption and obesity-related diseases is the disruption of the gut bacterial population, which promotes local and systemic inflammation. Wheat germ (WG) is rich in bioactive components with antioxidant and anti-inflammatory properties. OBJECTIVE: The aim of this study was to investigate the effects of WG supplementation in modulating the gut bacterial population and local and systemic inflammatory markers of mice fed a high-fat, high-sucrose (HFS) diet. METHODS: Six-week-old male C57BL/6 mice were randomly assigned to 4 groups (n = 12/group) and fed a control (C; 10% kcal fat, 10% kcal sucrose) or HFS (60% kcal fat, 20% kcal sucrose) diet with or without 10% WG (wt:wt) for 12 wk. Cecal bacteria was assessed via 16S rDNA sequencing, fecal short-chain fatty acids by GC, small intestinal CD4+ lymphocytes using flow cytometry, and gut antimicrobial peptide genes and inflammatory markers by quantitative polymerase chain reaction. Statistical analyses included Kruskal-Wallis/Dunn's test and 2-factor ANOVA using HFS and WG as factors. RESULTS: There was a 4-fold increase (P = 0.007) in the beneficial bacterial family, Lactobacillaceae, in the HFS + WG compared with the HFS group. Fecal propionic and n-butyric acids were elevated at least 2-fold in C + WG compared with the other groups (P < 0.0001). WG tended to increase (≥7%; P-trend = 0.12) small intestinal regulatory T cell:Th17 ratio, indicating a potential to induce an anti-inflammatory gut environment. WG elevated (≥35%) ileal gene expression of the anti-inflammatory cytokine Il10 compared to the unsupplemented groups (P = 0.038). Ileal gene expression of the antimicrobial peptides Reg3b and Reg3g was upregulated (≥95%) in the HFS + WG compared with other groups (P ≤ 0.040). WG reduced serum concentrations of the pro-inflammatory cytokines, interleukin (IL)-1B, IL-6, interferon-γ, and tumor necrosis factor-α (≥17%; P ≤ 0.012). CONCLUSIONS: WG selectively increased gut Lactobacillaceae, upregulated ileal antimicrobial peptides, and attenuated circulating pro-inflammatory cytokines of C57BL/6 mice fed a HFS diet. These changes may be vital in preventing HFS diet-induced comorbidities.


Assuntos
Dieta Hiperlipídica , Sacarose Alimentar/administração & dosagem , Suplementos Nutricionais , Microbioma Gastrointestinal , Lactobacillaceae/metabolismo , Triticum , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Ácidos Graxos Voláteis/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Triticum/química
8.
Proc Natl Acad Sci U S A ; 110(24): 9903-8, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716681

RESUMO

Zn(2+) is required for many aspects of neuronal structure and function. However, the regulation of Zn(2+) in the nervous system remains poorly understood. Systematic analysis of tissue-profiling microarray data showed that the zinc transporter ZIP12 (slc39a12) is highly expressed in the human brain. In the work reported here, we confirmed that ZIP12 is a Zn(2+) uptake transporter with a conserved pattern of high expression in the mouse and Xenopus nervous system. Mouse neurons and Neuro-2a cells produce fewer and shorter neurites after ZIP12 knockdown without affecting cell viability. Zn(2+) chelation or loading in cells to alter Zn(2+) availability respectively mimicked or reduced the effects of ZIP12 knockdown on neurite outgrowth. ZIP12 knockdown reduces cAMP response element-binding protein activation and phosphorylation at serine 133, which is a critical pathway for neuronal differentiation. Constitutive cAMP response element-binding protein activation restores impairments in neurite outgrowth caused by Zn(2+) chelation or ZIP12 knockdown. ZIP12 knockdown also reduces tubulin polymerization and increases sensitivity to nocodazole following neurite outgrowth. We find that ZIP12 is expressed during neurulation and early nervous system development in Xenopus tropicalis, where ZIP12 antisense morpholino knockdown impairs neural tube closure and arrests development during neurulation with concomitant reduction in tubulin polymerization in the neural plate. This study identifies a Zn(2+) transporter that is specifically required for nervous system development and provides tangible links between Zn(2+), neurulation, and neuronal differentiation.


Assuntos
Proteínas de Transporte de Cátions/genética , Neuritos/metabolismo , Neurulação/genética , Zinco/metabolismo , Animais , Encéfalo/metabolismo , Células CHO , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Hibridização In Situ , Camundongos , Neuritos/fisiologia , Neurulação/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Polimerização , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Xenopus/embriologia , Xenopus/genética , Xenopus/crescimento & desenvolvimento , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
9.
Physiol Rep ; 12(1): e15914, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38217044

RESUMO

Characterization of the interleukin (IL)-10 knockout (KO) mouse with chronic gut inflammation, cardiovascular dysfunction, and bone loss suggests a critical role for this cytokine in interorgan communication within the gut, bone, and cardiovascular axis. We sought to understand the role of IL-10 in the cross-talk between these systems. Six-week-old IL-10 KO mice and their wild type (WT) counterparts were maintained on a standard rodent diet for 3 or 6 months. Gene expression of proinflammatory markers and Fgf23, serum 17ß-estradiol (E2), and cardiac protein expression were assessed. Ileal Il17a and Tnf mRNA increased while Il6 mRNA increased in the bone and heart by at least 2-fold in IL-10 KO mice. Bone Dmp1 and Phex mRNA were repressed at 6 months in IL-10 KO mice, resulting in increased Fgf23 mRNA (~4-fold) that contributed to increased fibrosis. In the IL-10 KO mice, gut bacterial ß-glucuronidase activity and ovarian Cyp19a1 mRNA were lower (p < 0.05), consistent with reduced serum E2 and reduced cardiac pNOS3 (Ser1119 ) in these mice. Treatment of ileal lymphocytes with E2 reduced gut inflammation in WT but not IL-10 KO mice. In conclusion, our data suggest that diminished estrogen and defective bone mineralization increased FGF23 which contributed to cardiac fibrosis in the IL-10 KO mouse.


Assuntos
Cardiomiopatias , Interleucina-10 , Animais , Camundongos , Estrogênios , Inflamação/genética , Interleucina-10/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Curr Dev Nutr ; 7(1): 100023, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37181127

RESUMO

Background: Commensal gut bacteria, including Lactobacillus, can produce metabolites that stimulate the release of gut antimicrobial peptides (AMPs) via the signal transducer and activator of transcription (STAT)3 pathway and prevent obesity-associated leaky gut and chronic inflammation. We have previously reported that wheat germ (WG) selectively increased cecal Lactobacillus in obese mice. Objectives: This study investigated the effects of WG on gut STAT3 activation and AMPs (Reg3γ and Reg3ß) as well as the potential of WG to inhibit nuclear Nf-κB-activation and immune cell infiltration in the visceral adipose tissue (VAT) of mice fed a Western diet (i.e., high-fat and sucrose diet [HFS]). Methods: Six-wk-old male C57BL/6 mice were randomly assigned to 4 groups (n = 12/group): control (C, 10% fat and sucrose kcal) or HFS (45% fat and 26% sucrose kcal) diet with or without 10% WG (wt/wt) for 12 wk. Assessments include serum metabolic parameters jejunal AMPs genes, inflammatory markers, and phosphorylation of STAT3 as well as VAT NF-κBp65. Independent and interaction effects of HFS and WG were analyzed with a 2-factor ANOVA. Results: WG significantly improved markers of insulin resistance and upregulated jejunal Il10 and Il22 genes. The HFS + WG group had a 15-fold increase in jejunal pSTAT3 compared with the HFS group. Consequently, WG significantly upregulated jejunal mRNA expression of Reg3γ and Reg3ß. The HFS group had a significantly higher VAT NF-κBp65 phosphorylation than the C group, while the HFS + WG group suppressed this to the level of C. Moreover, VAT Il6 and Lbp genes were downregulated in the HFS + WG group compared with HFS. Genes related to macrophage infiltration in the VAT were repressed in the WG-fed mice. Conclusion: These findings show the potential of WG to influence vital regulatory pathways in the gut and adipose tissue which may reduce the chronic inflammatory burden on these tissues that are important targets in obesity and insulin resistance.

11.
Nutr Res ; 107: 86-95, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36206636

RESUMO

Ethiopian women have been reported to have low plasma 25-hydroxy-cholecalciferol (25(OH)D) concentrations despite an abundance of sunshine. Low dietary vitamin D intake, limited skin exposure to sun, and genetics are among factors suggested to affect vitamin D status in this population. In this study (Clinical Trial NCT02210884), we hypothesized that polymorphisms in the vitamin D binding protein (VDBP) gene (rs7041, rs4588) are associated with reduced plasma 25(OH)D concentrations in Ethiopian women. Lactating Ethiopian women (n = 110) were randomly assigned to weekly administration of vitamin D3 (15,000 IU) or a placebo. Plasma 25(OH)D was measured at baseline (within 2 weeks of delivery, before supplementation) and at 3, 6, and 12 months after delivery. Associations between VDBP polymorphism status for rs7041 and rs4588 and plasma 25(OH)D were determined by analysis of variance and multiple linear and logistic regressions. Multiple linear regression with maternal age as a covariate revealed that rs7041 is associated with reduced plasma 25(OH)D (P = .021) and more risk alleles at rs7041 and rs4588 are associated with reduced plasma 25(OH)D (P = .017). Logistic regression models for vitamin D insufficiency showed that additional risk alleles for rs7041 and rs4588 are associated with increased odds ratios (OR = 1.66; 95% CI, 1.10-2.62; P = .019) for plasma 25(OH)D below 40 nmol/L. Supplementation increased plasma 25(OH)D at 3 months in women with fewer risk alleles and across all genotypes at 6 and 12 months. VDBP polymorphisms may contribute to vitamin D insufficiency in Ethiopian lactating women. Furthermore, VDBP polymorphisms may blunt short-term responses to vitamin D supplementation and require longer periods of intervention.


Assuntos
Calcifediol , Deficiência de Vitamina D , Proteína de Ligação a Vitamina D , Feminino , Humanos , Calcifediol/sangue , Colecalciferol , Etiópia , Lactação , Polimorfismo de Nucleotídeo Único , Vitamina D , Proteína de Ligação a Vitamina D/genética
12.
J Biol Chem ; 285(1): 142-52, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19861415

RESUMO

Bioactive compounds reported to stimulate mitochondrial biogenesis are linked to many health benefits such increased longevity, improved energy utilization, and protection from reactive oxygen species. Previously studies have shown that mice and rats fed diets lacking in pyrroloquinoline quinone (PQQ) have reduced mitochondrial content. Therefore, we hypothesized that PQQ can induce mitochondrial biogenesis in mouse hepatocytes. Exposure of mouse Hepa1-6 cells to 10-30 microm PQQ for 24-48 h resulted in increased citrate synthase and cytochrome c oxidase activity, Mitotracker staining, mitochondrial DNA content, and cellular oxygen respiration. The induction of this process occurred through the activation of cAMP response element-binding protein (CREB) and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha), a pathway known to regulate mitochondrial biogenesis. PQQ exposure stimulated phosphorylation of CREB at serine 133, activated the promoter of PGC-1alpha, and increased PGC-1alpha mRNA and protein expression. PQQ did not stimulate mitochondrial biogenesis after small interfering RNA-mediated reduction in either PGC-1alpha or CREB expression. Consistent with activation of the PGC-1alpha pathway, PQQ increased nuclear respiratory factor activation (NRF-1 and NRF-2) and Tfam, TFB1M, and TFB2M mRNA expression. Moreover, PQQ protected cells from mitochondrial inhibition by rotenone, 3-nitropropionic acid, antimycin A, and sodium azide. The ability of PQQ to stimulate mitochondrial biogenesis accounts in part for action of this compound and suggests that PQQ may be beneficial in diseases associated with mitochondrial dysfunction.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Cofator PQQ/farmacologia , Transativadores/genética , Animais , Bovinos , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Camundongos , Mitocôndrias/enzimologia , Fatores Nucleares Respiratórios/metabolismo , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Succinato Desidrogenase/biossíntese , Superóxidos/metabolismo , Transativadores/metabolismo , Fatores de Transcrição
13.
Biochem J ; 429(3): 515-26, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20491655

RESUMO

PQQ (pyrroloquinoline quinone) improves energy utilization and reproductive performance when added to rodent diets devoid of PQQ. In the present paper we describe changes in gene expression patterns and transcriptional networks that respond to dietary PQQ restriction or pharmacological administration. Rats were fed diets either deficient in PQQ (PQQ-) or supplemented with PQQ (approx. 6 nmol of PQQ/g of food; PQQ+). In addition, groups of rats were either repleted by administering PQQ to PQQ- rats (1.5 mg of PQQ intraperitoneal/kg of body weight at 12 h intervals for 36 h; PQQ-/+) or partially depleted by feeding the PQQ- diet to PQQ+ rats for 48 h (PQQ+/-). RNA extracted from liver and a Codelink(R) UniSet Rat I Bioarray system were used to assess gene transcript expression. Of the approx. 10000 rat sequences and control probes analysed, 238 were altered at the P<0.01 level by feeding on the PQQ- diet for 10 weeks. Short-term PQQ depletion resulted in changes in 438 transcripts (P<0.01). PQQ repletion reversed the changes in transcript expression caused by PQQ deficiency and resulted in an alteration of 847 of the total transcripts examined (P<0.01). Genes important for cellular stress (e.g. thioredoxin), mitochondriogenesis, cell signalling [JAK (Janus kinase)/STAT (signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) pathways] and transport were most affected. qRT-PCR (quantitative real-time PCR) and functional assays aided in validating such processes as principal targets. Collectively, the results provide a mechanistic basis for previous functional observations associated with PQQ deficiency or PQQ administered in pharmacological amounts.


Assuntos
Suplementos Nutricionais , Janus Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Cofator PQQ/administração & dosagem , Fatores de Transcrição STAT/metabolismo , Tiorredoxinas/metabolismo , Transcrição Gênica , Animais , DNA Mitocondrial/metabolismo , Janus Quinases/genética , Lipídeos/sangue , Fígado/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição STAT/genética , Tiorredoxinas/genética
14.
Biomolecules ; 11(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34680074

RESUMO

Pyrroloquinoline quinone (PQQ) is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. In addition, PQQ attenuates clinically relevant dysfunctions (e.g., those associated with ischemia, inflammation and lipotoxicity). PQQ is novel among biofactors that are not currently accepted as vitamins or conditional vitamins. For example, the absence of PQQ in diets produces a response like a vitamin-related deficiency with recovery upon PQQ repletion in a dose-dependent manner. Moreover, potential health benefits, such as improved metabolic flexibility and immuno-and neuroprotection, are associated with PQQ supplementation. Here, we address PQQ's role as an enzymatic cofactor or accessory factor and highlight mechanisms underlying PQQ's actions. We review both large scale and targeted datasets demonstrating that a neonatal or perinatal PQQ deficiency reduces mitochondria content and mitochondrial-related gene expression. Data are reviewed that suggest PQQ's modulation of lactate acid and perhaps other dehydrogenases enhance NAD+-dependent sirtuin activity, along with the sirtuin targets, such as PGC-1α, NRF-1, NRF-2 and TFAM; thus, mediating mitochondrial functions. Taken together, current observations suggest vitamin-like PQQ has strong potential as a potent therapeutic nutraceutical.


Assuntos
Antioxidantes/farmacologia , Doença , Saúde , Cofator PQQ/farmacologia , Vitaminas/farmacologia , Animais , Dieta , Humanos
15.
Redox Biol ; 47: 102149, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600336

RESUMO

Epithelial-to-mesenchymal transition (EMT) is an essential mechanism for development and wound healing, but in cancer it also mediates the progression and spread of aggressive tumors while increasing therapeutic resistance. Adoption of a mesenchymal state is also associated with increased iron uptake, but the relationship between EMT and the key regulators of cellular iron metabolism remains undefined. In this regard, the human adrenal cortical carcinoma SW13 cell line represents an invaluable research model as HDAC inhibitor treatment can convert them from an epithelial-like (SW13-) cell type to a mesenchymal-like (SW13+) subtype. In this study we establish SW13 cells as a model for exploring the link between iron and EMT. Increased iron accumulation following HDAC inhibitor mediated EMT is associated with decreased expression of the iron export protein ferroportin, enhanced ROS production, and reduced expression of antioxidant response genes. As availability of redox active iron and loss of lipid peroxide repair capacity are hallmarks of ferroptosis, a form of iron-mediated cell death, we next examined whether HDAC inhibitor treatment could augment ferroptosis sensitivity. Indeed, HDAC inhibitor treatment synergistically increased cell death following induction of ferroptosis. The exact mechanisms by which HDAC inhibition facilitates cell death following ferroptosis induction requires further study. As several HDAC inhibitors are already in use clinically for the treatment of certain cancer types, the findings from these studies have immediate implications for improving iron-targeted chemotherapeutic strategies.


Assuntos
Ferroptose , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Inibidores de Histona Desacetilases/farmacologia , Homeostase , Humanos , Ferro
16.
Front Genet ; 12: 647946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790950

RESUMO

The SLC39A8 gene encodes a divalent metal transporter, ZIP8. SLC39A8 is associated with pleiotropic effects across multiple tissues, including the brain. We determine the different brain magnetic resonance imaging (MRI) phenotypes associated with SLC39A8. We used a phenome-wide association study approach followed by joint and conditional association analysis. Using the summary statistics datasets from a brain MRI genome-wide association study on adult United Kingdom (UK) Biobank participants, we systematically selected all brain MRI phenotypes associated with single-nucleotide polymorphisms (SNPs) within 500 kb of the SLC39A8 genetic locus. For all significant brain MRI phenotypes, we used GCTA-COJO to determine the number of independent association signals and identify index SNPs for each brain MRI phenotype. Linkage equilibrium for brain phenotypes with multiple independent signals was confirmed by LDpair. We identified 24 brain MRI phenotypes that vary due to MRI type and brain region and contain a SNP associated with the SLC39A8 locus. Missense ZIP8 polymorphism rs13107325 was associated with 22 brain MRI phenotypes. Rare ZIP8 variants present in a published UK Biobank dataset are associated with 6 brain MRI phenotypes also linked to rs13107325. Among the 24 datasets, an additional 4 association signals were identified by GCTA-COJO and confirmed to be in linkage equilibrium with rs13107325 using LDpair. These additional association signals represent new probable causative SNPs in addition to rs13107325. This study provides leads into how genetic variation in SLC39A8, a trace mineral transport gene, is linked to brain structure differences and may affect brain development and nervous system function.

17.
Gene ; 799: 145824, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34252531

RESUMO

The SLC39A12 gene encodes the zinc transporter protein ZIP12, which is expressed across many tissues and is highly abundant in the vertebrate nervous system. As a zinc transporter, ZIP12 functions to transport zinc across cellular membranes, including cellular zinc influx across the plasma membrane. Genome-wide association and exome sequencing studies have shown that brain susceptibility-weighted magnetic resonance imaging (MRI) intensity is associated with ZIP12 polymorphisms and rare mutations. ZIP12 is required for neural tube closure and embryonic development in Xenopus tropicalis. Frog embryos depleted of ZIP12 by antisense morpholinos develop an anterior neural tube defect and lack viability. ZIP12 is also necessary for neurite outgrowth and mitochondrial function in mouse neural cells. ZIP12 mRNA is increased in brain regions of schizophrenic patients. Outside of the nervous system, hypoxia induces ZIP12 expression in multiple mammalian species, including humans, which leads to endothelial and smooth muscle thickening in the lung and contributes towards pulmonary hypertension. Other studies have associated ZIP12 with other diseases such as cancer. Given that ZIP12 is highly expressed in the brain and that susceptibility-weighted MRI is associated with brain metal content, ZIP12 may affect neurological diseases and psychiatric illnesses such as Parkinson's disease, Alzheimer's disease, and schizophrenia. Furthermore, the induction of ZIP12 and resultant zinc uptake under pathophysiological conditions may be a critical component of disease pathology, such as in pulmonary hypertension. Drug compounds that bind metals like zinc may be able to treat diseases associated with impaired zinc homeostasis and altered ZIP12 function.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Proteínas de Xenopus/fisiologia , Zinco/metabolismo , Animais , Transtorno Autístico/metabolismo , Bancos de Espécimes Biológicos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Pulmão/fisiopatologia , Família Multigênica , Doenças Neurodegenerativas/etiologia , Estresse Oxidativo/fisiologia , Reino Unido , Vertebrados/genética
18.
J Nutr Biochem ; 88: 108542, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33129969

RESUMO

Hypothalamic inflammation has been linked to various aspects of central metabolic dysfunction and diseases in humans, including hyperphagia, altered energy expenditure, and obesity. We previously reported that loss of ß-carotene oxygenase 2 (BCO2), a mitochondrial inner membrane protein, causes the alteration of the hypothalamic metabolome, low-grade inflammation, and an increase in food intake in mice at an early age, e.g., 3-6 weeks. Here, we determined the extent to which the deficiency of BCO2 induces hypothalamic inflammation in BCO2 knockout mice. Mitochondrial proteomics, electron microscopy, and immunoblotting were used to assess the changes in hypothalamic mitochondrial dynamics and mitochondrial DNA sensing and signaling. The results showed that deficiency of BCO2 altered hypothalamic mitochondrial proteome and respiratory supercomplex assembly by enhancing the expression of NADH:ubiquinone oxidoreductase subunit A11 protein and improved cardiolipin synthesis. BCO2 deficiency potentiated mitochondrial fission but suppressed mitophagy and mitochondrial biogenesis. Furthermore, deficiency of BCO2 resulted in inactivation of mitochondrial MnSOD enzyme, excessive production of reactive oxygen species, and elevation of protein levels of stimulator of interferon genes (STING) and interferon regulatory factor 3 (IRF3) in the hypothalamus. The data suggest that BCO2 is essential for hypothalamic mitochondrial dynamics. BCO2 deficiency induces mitochondrial fragmentation and mitochondrial oxidative stress, which may lead to mitochondrial DNA release into the cytosol and subsequently sensing by activation of the STING-IRF3 signaling pathway in the mouse hypothalamus.


Assuntos
Dioxigenases/deficiência , Hipotálamo/metabolismo , Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Animais , DNA Mitocondrial/metabolismo , Dioxigenases/metabolismo , Metabolismo Energético , Humanos , Masculino , Metaboloma , Camundongos , Camundongos Knockout , Dinâmica Mitocondrial , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , beta Caroteno/metabolismo
19.
Free Radic Biol Med ; 164: 271-284, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33453359

RESUMO

Low-grade inflammation is a critical pathological factor contributing to the development of metabolic disorders. ß-carotene oxygenase 2 (BCO2) was initially identified as an enzyme catalyzing carotenoids in the inner mitochondrial membrane. Mutations in BCO2 are associated with inflammation and metabolic disorders in humans, yet the underlying mechanisms remain unknown. Here, we used loss-of-function approaches in mice and cell culture models to investigate the role of BCO2 in inflammation and metabolic dysfunction. We demonstrated decreases in BCO2 mRNA and protein levels and suppression of mitochondrial respiratory complex I proteins and mitochondrial superoxide dismutase levels in the liver of type 2 diabetic human subjects. Deficiency of BCO2 caused disruption of assembly of the mitochondrial respiratory supercomplexes, such as supercomplex III2+IV in mice, and overproduction of superoxide radicals in primary mouse embryonic fibroblasts. Further, deficiency of BCO2 increased protein carbonylation and populations of natural killer cells and M1 macrophages, and decreased populations of T cells, including CD4+ and/or CD8+ in the bone marrow and white adipose tissues. Elevation of plasma inflammatory cytokines and adipose tissue hypertrophy and inflammation were also characterized in BCO2 deficient mice. Moreover, BCO2 deficient mice were more susceptible to high-fat diet-induced obesity and hyperglycemia. Double knockout of BCO2 and leptin receptor genes caused a significantly greater elevation of the fasting blood glucose level in mice at 4 weeks of age, compared to the age- and sex-matched leptin receptor knockout. Finally, administration of Mito-TEMPO, a mitochondrial specific antioxidant attenuated systemic low-grade inflammation induced by BCO2 deficiency. Collectively, these findings suggest that BCO2 is essential for mitochondrial respiration and metabolic homeostasis in mammals. Loss or decreased expression of BCO2 leads to mitochondrial oxidative stress, low-grade inflammation, and the subsequent development of metabolic disorders.


Assuntos
Dioxigenases , beta Caroteno , Animais , Dioxigenases/metabolismo , Fibroblastos/metabolismo , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo
20.
J Nutr Biochem ; 88: 108543, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33144228

RESUMO

The onset of type 2 diabetes in obesity is associated with gut dysbiosis and a failure to confine commensal bacteria and toxins to the gut lumen while prebiotics may prevent these effects. This study evaluated the effects of pinto beans (PB) supplementation on cecal bacteria, short-chain fatty acids (SCFAs), distal ileal antigen presentation marker (major histocompatibility complex [MHC] II) and antimicrobial peptide genes during short-term high-fat, high sucrose (HFS) feeding. Six-week-old, male C57BL/6J mice were randomly assigned to four groups (n=12/group), and fed a control (C) or HFS diet with or without cooked PB (10%, wt/wt) for 30 days. Supplemental PB in both the C and HFS diets decreased the abundance of Tenericutes and the sulfate-reducing bacteria Bilophila. In contrast, PB raised the abundance of taxa within the SCFAs-producing family, Lachnospiraceae, compared to groups without PB. Consequently, fecal butyric acid was significantly higher in PB-supplemented groups compared to C and HFS groups. PB reversed the HFS-induced ablation of the distal ileal STAT3 phosphorylation, and up-regulated antimicrobial peptide genes (Reg3γ and Reg3ß). Furthermore, the expression of MHC II protein was elevated in the PB supplemented groups compared to C and HFS. Tenericutes and Bilophilia negatively correlated with activated STAT3 and MHC II proteins. Finally, supplemental PB improved fasting blood glucose, glucose tolerance and suppressed TNFα and inducible nitric oxide synthase mRNA in the visceral adipose tissue. Put together, the beneficial impact of PB supplementation on the gut may be central to its potential to protect against diet-induced inflammation and impaired glucose tolerance.


Assuntos
Disbiose/dietoterapia , Microbioma Gastrointestinal , Genes MHC da Classe II , Phaseolus , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Ceco/metabolismo , Dieta Ocidental , Suplementos Nutricionais , Disbiose/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Expressão Gênica , Humanos , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa