Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 180(5): 956-967.e17, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084332

RESUMO

Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying essential physiological functions such as touch and pain sensing, hearing, and proprioception. Although the mechanisms for some of these functions have been identified, the molecules essential to the sense of pain have remained elusive. Here we report identification of TACAN (Tmem120A), an ion channel involved in sensing mechanical pain. TACAN is expressed in a subset of nociceptors, and its heterologous expression increases mechanically evoked currents in cell lines. Purification and reconstitution of TACAN in synthetic lipids generates a functional ion channel. Finally, a nociceptor-specific inducible knockout of TACAN decreases the mechanosensitivity of nociceptors and reduces behavioral responses to painful mechanical stimuli but not to thermal or touch stimuli. We propose that TACAN is an ion channel that contributes to sensing mechanical pain.


Assuntos
Canais Iônicos/fisiologia , Mecanotransdução Celular/genética , Nociceptores/metabolismo , Dor/genética , Tato/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , Canais Iônicos/genética , Lipídeos/genética , Camundongos , Camundongos Knockout , Dor/fisiopatologia , Técnicas de Patch-Clamp , Estresse Mecânico , Tato/fisiologia
2.
EMBO J ; 35(4): 414-28, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26772186

RESUMO

Extracellular pH variations are seen as the principal endogenous signal that triggers activation of Acid-Sensing Ion Channels (ASICs), which are basically considered as proton sensors, and are involved in various processes associated with tissue acidification. Here, we show that human painful inflammatory exudates, displaying non-acidic pH, induce a slow constitutive activation of human ASIC3 channels. This effect is largely driven by lipids, and we identify lysophosphatidylcholine (LPC) and arachidonic acid (AA) as endogenous activators of ASIC3 in the absence of any extracellular acidification. The combination of LPC and AA evokes robust depolarizing current in DRG neurons at physiological pH 7.4, increases nociceptive C-fiber firing, and induces pain behavior in rats, effects that are all prevented by ASIC3 blockers. Lipid-induced pain is also significantly reduced in ASIC3 knockout mice. These findings open new perspectives on the roles of ASIC3 in the absence of tissue pH variation, as well as on the contribution of those channels to lipid-mediated signaling.


Assuntos
Canais Iônicos Sensíveis a Ácido/biossíntese , Ácido Araquidônico/metabolismo , Lisofosfatidilcolinas/metabolismo , Nociceptores/fisiologia , Animais , Linhagem Celular , Gânglios Espinais/citologia , Humanos , Camundongos Knockout , Dor , Ratos
3.
J Exp Med ; 217(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32573694

RESUMO

Chronic pain is a major comorbidity of chronic inflammatory diseases. Here, we report that the cytokine IL-1ß, which is abundantly produced during multiple sclerosis (MS), arthritis (RA), and osteoarthritis (OA) both in humans and in animal models, drives pain associated with these diseases. We found that the type 1 IL-1 receptor (IL-1R1) is highly expressed in the mouse and human by a subpopulation of TRPV1+ dorsal root ganglion neurons specialized in detecting painful stimuli, termed nociceptors. Strikingly, deletion of the Il1r1 gene specifically in TRPV1+ nociceptors prevented the development of mechanical allodynia without affecting clinical signs and disease progression in mice with experimental autoimmune encephalomyelitis and K/BxN serum transfer-induced RA. Conditional restoration of IL-1R1 expression in nociceptors of IL-1R1-knockout mice induced pain behavior but did not affect joint damage in monosodium iodoacetate-induced OA. Collectively, these data reveal that neuronal IL-1R1 signaling mediates pain, uncovering the potential benefit of anti-IL-1 therapies for pain management in patients with chronic inflammatory diseases.


Assuntos
Inflamação/metabolismo , Inflamação/patologia , Neurônios/metabolismo , Dor/metabolismo , Dor/patologia , Receptores de Interleucina-1/metabolismo , Adulto , Idoso , Animais , Artrite Reumatoide/patologia , Comportamento Animal , Doença Crônica , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Membro Posterior/patologia , Humanos , Hiperalgesia/complicações , Hiperalgesia/patologia , Inflamação/complicações , Interleucina-1beta/metabolismo , Articulação do Joelho/patologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células Mieloides/metabolismo , Neurônios/patologia , Nociceptores/metabolismo , Osteoartrite , Dor/complicações , Receptores de Interleucina-1/deficiência , Receptores de Interleucina-1/genética , Células Receptoras Sensoriais/metabolismo , Raízes Nervosas Espinhais/metabolismo , Raízes Nervosas Espinhais/patologia , Canais de Cátion TRPV/metabolismo
4.
Pain ; 155(12): 2534-2544, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239074

RESUMO

Two-pore domain background K(+) channels (K2p or KCNK) produce hyperpolarizing currents that control cell membrane polarity and neuronal excitability throughout the nervous system. The TREK2 channel as well as the related TREK1 and TRAAK channels are mechanical-, thermal- and lipid-gated channels that share many regulatory properties. TREK2 is one of the major background channels expressed in rodent nociceptive neurons of the dorsal root ganglia that innervate the skin and deep body tissues, but its role in somatosensory perception and nociception has remained poorly understood. We now report that TREK2 is a regulatory channel that controls the perception of non aversive warm, between 40°C and 46°C, and moderate ambient cool temperatures, between 20°C and 25°C, in mice. TREK2 controls the firing activity of peripheral sensory C-fibers in response to changes in temperature. The role of TREK2 in thermosensation is different from that of TREK1 and TRAAK channels; rather, TREK2, TREK1, and TRAAK channels appear to have complementary roles in thermosensation. TREK2 is also involved in mechanical pain perception and in osmotic pain after sensitization by prostaglandin E2. TREK2 is involved in the cold allodynia that characterizes the neuropathy commonly associated with treatments with the anticancer drug oxaliplatin. These results suggest that positive modulation of the TREK2 channel may have beneficial analgesic effects in these neuropathic conditions.


Assuntos
Regulação da Expressão Gênica/genética , Percepção da Dor/fisiologia , Limiar da Dor/psicologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sensação Térmica/genética , Animais , Antineoplásicos/toxicidade , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas Amielínicas/fisiologia , Compostos Organoplatínicos/toxicidade , Oxaliplatina , Medição da Dor , Percepção da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Estimulação Física , Canais de Potássio/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Sensação Térmica/efeitos dos fármacos
5.
Nat Commun ; 4: 2941, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24346231

RESUMO

Morphine is the gold-standard pain reliever for severe acute or chronic pain but it also produces adverse side effects that can alter the quality of life of patients and, in some rare cases, jeopardize the vital prognosis. Morphine elicits both therapeutic and adverse effects primarily through the same µ opioid receptor subtype, which makes it difficult to separate the two types of effects. Here we show that beneficial and deleterious effects of morphine are mediated through different signalling pathways downstream from µ opioid receptor. We demonstrate that the TREK-1 K(+) channel is a crucial contributor of morphine-induced analgesia in mice, while it is not involved in morphine-induced constipation, respiratory depression and dependence-three main adverse effects of opioid analgesic therapy. These observations suggest that direct activation of the TREK-1 K(+) channel, acting downstream from the µ opioid receptor, might have strong analgesic effects without opioid-like adverse effects.


Assuntos
Analgesia/métodos , Morfina/efeitos adversos , Morfina/uso terapêutico , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/uso terapêutico , Animais , Células COS , Chlorocebus aethiops , Constipação Intestinal , Cruzamentos Genéticos , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Naloxona/química , Dor/tratamento farmacológico , Manejo da Dor , Receptores Opioides mu/metabolismo , Insuficiência Respiratória , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa