Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Exp Physiol ; 106(5): 1208-1223, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675111

RESUMO

NEW FINDINGS: What is the central question of this study? What is the relationship between proteins in skeletal muscle and adipose tissue determined at rest and at peak rates of fat oxidation in men and women? What is the main finding and its importance? The resting contents of proteins in skeletal muscle involved in triglyceride hydrolysis and mitochondrial lipid transport were more strongly associated with peak fat oxidation rates than proteins related to lipid transport or hydrolysis in adipose tissue. Although females displayed higher relative rates of fat oxidation than males, this was not explained by the proteins measured in this study, suggesting that other factors determine sex differences in fat metabolism. ABSTRACT: We explored key proteins involved in fat metabolism that might be associated with peak fat oxidation (PFO) and account for sexual dimorphism in fuel metabolism during exercise. Thirty-six healthy adults [15 women; 40 ± 11 years of age; peak oxygen consumption 42.5 ± 9.5 ml (kg body mass)-1  min-1 ; mean ± SD] completed two exercise tests to determine PFO via indirect calorimetry. Resting adipose tissue and/or skeletal muscle biopsies were obtained to determine the adipose tissue protein content of PLIN1, ABHD5 (CGI-58), LIPE (HSL), PNPLA2 (ATGL), ACSL1, CPT1B and oestrogen receptor α (ERα) and the skeletal muscle protein content of FABP 3 (FABPpm), PNPLA2 (ATGL), ACSL1, CTP1B and ESR1 (ERα). Moderate strength correlations were found between PFO [in milligrams per kilogram of fat-free mass (FFM) per minute] and the protein content of PNPLA2 (ATGL) [rs  = 0.41 (0.03-0.68), P < 0.05] and CPT1B [rs  = 0.45 (0.09-0.71), P < 0.05] in skeletal muscle. No other statistically significant bivariate correlations were found consistently. Females had a greater relative PFO than males [7.1 ± 1.9 vs. 4.5 ± 1.3 and 7.3 ± 1.7 vs. 4.8 ± 1.2 mg (kg FFM)-1  min-1 in the adipose tissue (n = 14) and skeletal muscle (n = 12) subgroups, respectively (P < 0.05)]. No statistically significant sex differences were found in the content of these proteins. The regulation of PFO might involve processes relating to intramyocellular triglyceride hydrolysis and mitochondrial fatty acid transport, and adipose tissue is likely to play a more minor role than muscle. Sex differences in fat metabolism are likely to be attributable to factors other than the resting content of proteins in skeletal muscle and adipose tissue relating to triglyceride hydrolysis and fatty acid transport.


Assuntos
Músculo Esquelético , Caracteres Sexuais , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Aciltransferases , Tecido Adiposo/metabolismo , Adulto , Carnitina O-Palmitoiltransferase/metabolismo , Exercício Físico/fisiologia , Feminino , Humanos , Lipase/metabolismo , Metabolismo dos Lipídeos , Masculino , Músculo Esquelético/metabolismo
2.
Int J Sport Nutr Exerc Metab ; 31(3): 227-235, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33588373

RESUMO

This study explored lifestyle and biological determinants of peak fat oxidation (PFO) during cycle ergometry, using duplicate measures to account for day-to-day variation. Seventy-three healthy adults (age range: 19-63 years; peak oxygen consumption [V˙O2peak]: 42.4 [10.1] ml·kg BM-1·min-1; n = 32 women]) completed trials 7-28 days apart that assessed resting metabolic rate, a resting venous blood sample, and PFO by indirect calorimetry during an incremental cycling test. Habitual physical activity (combined heart rate accelerometer) and dietary intake (weighed record) were assessed before the first trial. Body composition was assessed 2-7 days after the second identical trial by dual-energy X-ray absorptiometry scan. Multiple linear regressions were performed to identify determinants of PFO (mean of two cycle tests). A total variance of 79% in absolute PFO (g·min-1) was explained with positive coefficients for V˙O2peak (strongest predictor), FATmax (i.e the % of V˙O2peak that PFO occurred at), and resting fat oxidation rate (g·min-1), and negative coefficients for body fat mass (kg) and habitual physical activity level. When expressed relative to fat-free mass, 64% of variance in PFO was explained: positive coefficients for FATmax (strongest predictor), V˙O2peak, and resting fat oxidation rate, and negative coefficients for male sex and fat mass. This duplicate design revealed that biological and lifestyle factors explain a large proportion of variance in PFO during incremental cycling. After accounting for day-to-day variation in PFO, V˙O2peak and FATmax were strong and consistent predictors of PFO.


Assuntos
Ciclismo/psicologia , Gorduras/metabolismo , Adulto , Testes Respiratórios , Calorimetria Indireta , Estudos Transversais , Registros de Dieta , Exercício Físico , Teste de Esforço , Feminino , Humanos , Modelos Lineares , Lipídeos , Masculino , Pessoa de Meia-Idade , Oxirredução , Fatores Sexuais , Adulto Jovem
3.
Eur J Nutr ; 59(6): 2449-2462, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31531707

RESUMO

PURPOSE: To examine whether calcium type and co-ingestion with protein alter gut hormone availability. METHODS: Healthy adults aged 26 ± 7 years (mean ± SD) completed three randomized, double-blind, crossover studies. In all studies, arterialized blood was sampled postprandially over 120 min to determine GLP-1, GIP and PYY responses, alongside appetite ratings, energy expenditure and blood pressure. In study 1 (n = 20), three treatments matched for total calcium content (1058 mg) were compared: calcium citrate (CALCITR); milk minerals rich in calcium (MILK MINERALS); and milk minerals rich in calcium plus co-ingestion of 50 g whey protein hydrolysate (MILK MINERALS + PROTEIN). In study 2 (n = 6), 50 g whey protein hydrolysate (PROTEIN) was compared to MILK MINERALS + PROTEIN. In study 3 (n = 6), MILK MINERALS was compared to the vehicle of ingestion (water plus sucralose; CONTROL). RESULTS: MILK MINERALS + PROTEIN increased GLP-1 incremental area under the curve (iAUC) by ~ ninefold (43.7 ± 11.1 pmol L-1 120 min; p < 0.001) versus both CALCITR and MILK MINERALS, with no difference detected between CALCITR (6.6 ± 3.7 pmol L-1 120 min) and MILK MINERALS (5.3 ± 3.5 pmol L-1 120 min; p > 0.999). MILK MINERALS + PROTEIN produced a GLP-1 iAUC ~ 25% greater than PROTEIN (p = 0.024; mean difference: 9.1 ± 6.9 pmol L-1 120 min), whereas the difference between MILK MINERALS versus CONTROL was small and non-significant (p = 0.098; mean difference: 4.2 ± 5.1 pmol L-1 120 min). CONCLUSIONS: When ingested alone, milk minerals rich in calcium do not increase GLP-1 secretion compared to calcium citrate. Co-ingesting high-dose whey protein hydrolysate with milk minerals rich in calcium increases postprandial GLP-1 concentrations to some of the highest physiological levels ever reported. Registered at ClinicalTrials.gov: NCT03232034, NCT03370484, NCT03370497.


Assuntos
Cálcio/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Leite/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Proteínas do Soro do Leite/química , Adulto , Animais , Estudos Cross-Over , Método Duplo-Cego , Ingestão de Alimentos , Humanos , Minerais/farmacologia , Período Pós-Prandial , Adulto Jovem
4.
Eur J Appl Physiol ; 120(8): 1745-1759, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32488584

RESUMO

PURPOSE: Prior studies exploring the reliability of peak fat oxidation (PFO) and the intensity that elicits PFO (FATMAX) are often limited by small samples. This study characterised the reliability of PFO and FATMAX in a large cohort of healthy men and women. METHODS: Ninety-nine adults [49 women; age: 35 (11) years; [Formula: see text]O2peak: 42.2 (10.3) mL·kg BM-1·min-1; mean (SD)] completed two identical exercise tests (7-28 days apart) to determine PFO (g·min-1) and FATMAX (%[Formula: see text]O2peak) by indirect calorimetry. Systematic bias and the absolute and relative reliability of PFO and FATMAX were explored in the whole sample and sub-categories of: cardiorespiratory fitness, biological sex, objectively measured physical activity levels, fat mass index (derived by dual-energy X-ray absorptiometry) and menstrual cycle status. RESULTS: No systematic bias in PFO or FATMAX was found between exercise tests in the entire sample (- 0.01 g·min-1 and 0%[Formula: see text]O2peak, respectively; p > 0.05). Absolute reliability was poor [within-subject coefficient of variation: 21% and 26%; typical errors: ± 0.06 g·min-1 and × / ÷ 1.26%[Formula: see text]O2peak; 95% limits of agreement: ± 0.17 g·min-1 and × / ÷ 1.90%[Formula: see text]O2peak, respectively), despite high (r = 0.75) and moderate (r = 0.45) relative reliability for PFO and FATMAX, respectively. These findings were consistent across all sub-groups. CONCLUSION: Repeated assessments are required to more accurately determine PFO and FATMAX.


Assuntos
Metabolismo dos Lipídeos , Consumo de Oxigênio , Oxigênio/metabolismo , Tecido Adiposo/metabolismo , Adiposidade , Adolescente , Adulto , Idoso , Análise de Variância , Viés , Calorimetria/métodos , Calorimetria/normas , Aptidão Cardiorrespiratória , Interpretação Estatística de Dados , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Reprodutibilidade dos Testes
5.
Int J Obes (Lond) ; 43(6): 1135-1146, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30482934

RESUMO

BACKGROUND AND OBJECTIVES: Previous studies have documented that high rates of delay discounting are associated with obesity. However, studies utilizing monetary reward experiments typically report no associations, as opposed to positive associations apparent in studies utilising food-reward experiments. Our objective was to investigate the reasons behind the mixed evidence from a methodological perspective using systematic review and meta-analytic methodologies. METHODS: Seven databases (EMBASE, MEDLINE, PsycINFO, Scopus, Web of Science, Econlit and IBSS) were systematically searched. Logistic meta-regression was applied to identify the determinants of a significant association and risk of bias was assessed using a modified form of the Newcastle Ottawa cohort scale. RESULTS: A total of 59 studies were identified, among which 29 studies (49.2%) found a significant positive association and 29 (49.2%) reported no association. A higher proportion of significant and positive associations was reported in those studies utilizing 'best-practice' methods (i.e. appropriate measurement models) to estimate monetary delay discounting (15/27; 55.6%) and incentive-compatible experiments (10/16; 62.5%) than those using non-'best-practice' methods (14/34; 41.2%) and hypothetical experiments (19/43; 44.2%). All five studies utilizing both 'best-practice' methods and incentive-compatible experiments generated a positive and significant relationship. Results from a logistic meta-regression also suggested that studies employing incentive-compatible experiments (OR: 4.38, 95% CI = 1.05-18.33, p value: 0.04), 'best-practice' methods (OR: 4.40, 95% CI = 0.88-22.99, p value: 0.07), parametric methods (OR: 3.36, 95% CI = 0.83-13.57, p value: 0.04), those conducted in children/adolescent populations (OR: 3.90, 95% CI = 0.85-17.88, p value: 0.08), and those with larger sample size (OR: 1.91, 95% CI = 1.15-3.18, p value: 0.01) tended to show positive and significant associations between delay discounting and obesity. CONCLUSIONS: This review suggests that the mixed evidence to date is a result of methodological heterogeneity, and that future studies should utilise 'best practice' methods.


Assuntos
Desvalorização pelo Atraso , Alimentos , Doações , Comportamentos Relacionados com a Saúde/fisiologia , Obesidade/psicologia , Recompensa , Desvalorização pelo Atraso/fisiologia , Humanos , Motivação , Obesidade/fisiopatologia , Obesidade/prevenção & controle
6.
Eur J Sport Sci ; 20(4): 452-460, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31397212

RESUMO

Exploring individual responses to exercise training is a growing area of interest. Understanding reasons behind true observed inter-individual responses may help personalise exercise training to maximise the benefits received. While numerous factors have been explored, an often underappreciated consideration in the sport and exercise science field is the influence intra-individual variation, both in a single measurement and in response to an intervention, may have on training outcomes. Several study designs and statistical approaches are available to incorporate intra-individual variation into interventions and accordingly provide information on whether 'true' inter-individual responses are present or if they are an artefact of intra-individual variation. However, such approaches are sparingly applied. Moreover, intra-individual variation may also be important when true inter-individual response differences are present. In this perspective piece, the concept of intra-individual variation is described before briefly summarising study designs and statistical practices to account for intra-individual variation. We then outline two examples of physiological practices (stratified randomisation and prescribing exercise programmes upon training parameters) to demonstrate why sport and exercise scientists should acknowledge intra-individual variation prior to the implementation of an intervention, which potentially offers an additional explanation behind observed true inter-individual responses to training. Repeated testing pre-implementation of exercise training would conceptually provide more confident estimates of training parameters, which if utilised in a study design will help attenuate biases that may dictate inter-individual differences. Moreover, the incorporation of intra-individual differences will facilitate insights into alternative factors that may predict and/or explain true observed individual responses to an exercise training programme.


Assuntos
Adaptação Fisiológica , Variação Biológica Individual , Exercício Físico , Projetos de Pesquisa , Frequência Cardíaca , Humanos , Consumo de Oxigênio , Reprodutibilidade dos Testes
7.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628477

RESUMO

CONTEXT: Pre-exercise nutrient availability alters acute metabolic responses to exercise, which could modulate training responsiveness. OBJECTIVE: To assess acute and chronic effects of exercise performed before versus after nutrient ingestion on whole-body and intramuscular lipid utilization and postprandial glucose metabolism. DESIGN: (1) Acute, randomized, crossover design (Acute Study); (2) 6-week, randomized, controlled design (Training Study). SETTING: General community. PARTICIPANTS: Men with overweight/obesity (mean ± standard deviation, body mass index: 30.2 ± 3.5 kg⋅m-2 for Acute Study, 30.9 ± 4.5 kg⋅m-2 for Training Study). INTERVENTIONS: Moderate-intensity cycling performed before versus after mixed-macronutrient breakfast (Acute Study) or carbohydrate (Training Study) ingestion. RESULTS: Acute Study-exercise before versus after breakfast consumption increased net intramuscular lipid utilization in type I (net change: -3.44 ± 2.63% versus 1.44 ± 4.18% area lipid staining, P < 0.01) and type II fibers (-1.89 ± 2.48% versus 1.83 ± 1.92% area lipid staining, P < 0.05). Training Study-postprandial glycemia was not differentially affected by 6 weeks of exercise training performed before versus after carbohydrate intake (P > 0.05). However, postprandial insulinemia was reduced with exercise training performed before but not after carbohydrate ingestion (P = 0.03). This resulted in increased oral glucose insulin sensitivity (25 ± 38 vs -21 ± 32 mL⋅min-1⋅m-2; P = 0.01), associated with increased lipid utilization during exercise (r = 0.50, P = 0.02). Regular exercise before nutrient provision also augmented remodeling of skeletal muscle phospholipids and protein content of the glucose transport protein GLUT4 (P < 0.05). CONCLUSIONS: Experiments investigating exercise training and metabolic health should consider nutrient-exercise timing, and exercise performed before versus after nutrient intake (ie, in the fasted state) may exert beneficial effects on lipid utilization and reduce postprandial insulinemia.


Assuntos
Terapia por Exercício/métodos , Resistência à Insulina , Metabolismo dos Lipídeos , Síndrome Metabólica/prevenção & controle , Obesidade/terapia , Sobrepeso/terapia , Adulto , Estudos de Casos e Controles , Ingestão de Energia , Metabolismo Energético , Seguimentos , Humanos , Lipídeos/análise , Masculino , Síndrome Metabólica/epidemiologia , Nutrientes , Obesidade/fisiopatologia , Sobrepeso/fisiopatologia , Reino Unido/epidemiologia
8.
Appl Physiol Nutr Metab ; 43(12): 1288-1297, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29852078

RESUMO

The maximal capacity to utilise fat (peak fat oxidation, PFO) may have implications for health and ultra-endurance performance and is commonly determined by incremental exercise tests employing 3-min stages. However, 3-min stages may be insufficient to attain steady-state gas kinetics, compromising test validity. We assessed whether 4-min stages produce steady-state gas exchange and reliable PFO estimates in adults with peak oxygen consumption < 40 mL·kg-1·min-1. Fifteen participants (9 females) completed a graded test to determine PFO and the intensity at which this occurred (FATMAX). Three short continuous exercise sessions (SCE) were then completed in a randomised order, involving completion of the graded test to the stage (i) preceding, (ii) equal to (SCEequal), or (iii) after the stage at which PFO was previously attained, whereupon participants then continued to cycle for 10 min at that respective intensity. Expired gases were sampled at minutes 3-4, 5-6, 7-8, and 9-10. Individual data showed steady-state gas exchange was achieved within 4 min during SCEequal. Mean fat oxidation rates were not different across time within SCEequal nor compared with the graded test at FATMAX (both p > 0.05). However, the graded test displayed poor surrogate validity (SCEequal, minutes 3-4 vs. 5-6, 7-8, and 9-10) and day-to-day reliability (minutes 3-4, SCEequal vs. graded test) to determine PFO, as evident by correlations (range: 0.47-0.83) and typical errors and 95% limits of agreement (ranges: 0.03-0.05 and ±0.09-0.15 g·min-1, respectively). In conclusion, intraindividual variation in PFO is substantial despite 4-min stages establishing steady-state gas exchange in individuals with low fitness. Individual assessment of PFO may require multiple assessments.


Assuntos
Aptidão Cardiorrespiratória/fisiologia , Metabolismo Energético/fisiologia , Metabolismo dos Lipídeos/fisiologia , Adulto , Estudos Cross-Over , Teste de Esforço , Feminino , Humanos , Cinética , Masculino , Oxirredução , Distribuição Aleatória , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa