Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 289(42): 29219-34, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25173704

RESUMO

The periplasmic binding protein (PBP) FepB plays a key role in transporting the catecholate siderophore ferric enterobactin from the outer to the inner membrane in Gram-negative bacteria. The solution structures of the 34-kDa apo- and holo-FepB from Escherichia coli, solved by NMR, represent the first solution structures determined for the type III class of PBPs. Unlike type I and II PBPs, which undergo large "Venus flytrap" conformational changes upon ligand binding, both forms of FepB maintain similar overall folds; however, binding of the ligand is accompanied by significant loop movements. Reverse methyl cross-saturation experiments corroborated chemical shift perturbation results and uniquely defined the binding pocket for gallium enterobactin (GaEnt). NMR relaxation experiments indicated that a flexible loop (residues 225-250) adopted a more rigid and extended conformation upon ligand binding, which positioned residues for optimal interactions with the ligand and the cytoplasmic membrane ABC transporter (FepCD), respectively. In conclusion, this work highlights the pivotal role that structural dynamics plays in ligand binding and transporter interactions in type III PBPs.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Cristalografia por Raios X , Enterobactina/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Eletricidade Estática
2.
J Biol Chem ; 288(44): 31409-22, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24036119

RESUMO

Escherichia coli HisJ is a type II periplasmic binding protein that functions to reversibly capture histidine and transfer it to its cognate inner membrane ABC permease. Here, we used NMR spectroscopy to determine the structure of apo-HisJ (26.5 kDa) in solution. HisJ is a bilobal protein in which domain 1 (D1) is made up of two noncontiguous subdomains, and domain 2 (D2) is expressed as the inner domain. To better understand the roles of D1 and D2, we have isolated and characterized each domain separately. Structurally, D1 closely resembles its homologous domain in apo- and holo-HisJ, whereas D2 is more similar to the holo-form. NMR relaxation experiments reveal that HisJ becomes more ordered upon ligand binding, whereas isolated D2 experiences a significant reduction in slower (millisecond to microsecond) motions compared with the homologous domain in apo-HisJ. NMR titrations reveal that D1 is able to bind histidine in a similar manner as full-length HisJ, albeit with lower affinity. Unexpectedly, isolated D1 and D2 do not interact with each other in the presence or absence of histidine, which indicates the importance of intact interdomain-connecting elements (i.e. hinge regions) for HisJ functioning. Our results shed light on the binding mechanism of type II periplasmic binding proteins where ligand is initially bound by D1, and D2 plays a supporting role in this dynamic process.


Assuntos
Escherichia coli K12/química , Proteínas de Escherichia coli/química , Histidina/química , Proteínas Periplásmicas de Ligação/química , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Histidina/metabolismo , Ligantes , Ressonância Magnética Nuclear Biomolecular , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
3.
J Biol Chem ; 285(40): 30558-66, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20659901

RESUMO

Bacterial acyl carrier protein (ACP) is a highly anionic, 9 kDa protein that functions as a cofactor protein in fatty acid biosynthesis. Escherichia coli ACP is folded at neutral pH and in the absence of divalent cations, while Vibrio harveyi ACP, which is very similar at 86% sequence identity, is unfolded under the same conditions. V. harveyi ACP adopts a folded conformation upon the addition of divalent cations such as Ca(2+) and Mg(2+) and a mutant, A75H, was previously identified that restores the folded conformation at pH 7 in the absence of divalent cations. In this study we sought to understand the unique folding behavior of V. harveyi ACP using NMR spectroscopy and biophysical methods. The NMR solution structure of V. harveyi ACP A75H displays the canonical ACP structure with four helices surrounding a hydrophobic core, with a narrow pocket closed off from the solvent to house the acyl chain. His-75, which is charged at neutral pH, participates in a stacking interaction with Tyr-71 in the far C-terminal end of helix IV. pH titrations and the electrostatic profile of ACP suggest that V. harveyi ACP is destabilized by anionic charge repulsion around helix II that can be partially neutralized by His-75 and is further reduced by divalent cation binding. This is supported by differential scanning calorimetry data which indicate that calcium binding further increases the melting temperature of V. harveyi ACP A75H by ∼20 °C. Divalent cation binding does not alter ACP dynamics on the ps-ns timescale as determined by (15)N NMR relaxation experiments, however, it clearly stabilizes the protein fold as observed by hydrogen-deuterium exchange studies. Finally, we demonstrate that the E. coli ACP H75A mutant is similarly unfolded as wild-type V. harveyi ACP, further stressing the importance of this particular residue for proper protein folding.


Assuntos
Proteína de Transporte de Acila/química , Proteínas de Bactérias/química , Cálcio/química , Magnésio/química , Mutação de Sentido Incorreto , Dobramento de Proteína , Vibrio/química , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/química , Medição da Troca de Deutério , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Vibrio/genética , Vibrio/metabolismo
4.
Biol Chem ; 392(1-2): 39-52, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21194366

RESUMO

In Escherichia coli the Fhu, Fep and Fec transport systems are involved in the uptake of chelated ferric iron-siderophore complexes, whereas in pathogenic strains heme can also be used as an iron source. An essential step in these pathways is the movement of the ferric-siderophore complex or heme from the outer membrane transporter across the periplasm to the cognate cytoplasmic membrane ATP-dependent transporter. This is accomplished in each case by a dedicated periplasmic binding protein (PBP). Ferric-siderophore binding PBPs belong to the PBP protein superfamily and adopt a bilobal type III structural fold in which the two independently folded amino and carboxy terminal domains are linked together by a single long α-helix of approximately 20 amino acids. Recent structural studies reveal how the PBPs of the Fhu, Fep, Fec and Chu systems are able to bind their corresponding ligands. These complex structures will be discussed and placed in the context of our current understanding of the entire type III family of Gram-negative periplasmic binding proteins and related Gram-positive substrate binding proteins.


Assuntos
Heme/metabolismo , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/metabolismo , Sideróforos/metabolismo , Bactérias/química , Bactérias/metabolismo , Heme/química , Transporte Proteico , Sideróforos/química
5.
PLoS Pathog ; 5(9): e1000572, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19730690

RESUMO

Next to the two-component and quorum sensing systems, cell-surface signaling (CSS) has been recently identified as an important regulatory system in Pseudomonas aeruginosa. CSS systems sense signals from outside the cell and transmit them into the cytoplasm. They generally consist of a TonB-dependent outer membrane receptor, a sigma factor regulator (or anti-sigma factor) in the cytoplasmic membrane, and an extracytoplasmic function (ECF) sigma factor. Upon perception of the extracellular signal by the receptor the ECF sigma factor is activated and promotes the transcription of a specific set of gene(s). Although most P. aeruginosa CSS systems are involved in the regulation of iron uptake, we have identified a novel system involved in the regulation of virulence. This CSS system, which has been designated PUMA3, has a number of unusual characteristics. The most obvious difference is the receptor component which is considerably smaller than that of other CSS outer membrane receptors and lacks a beta-barrel domain. Homology modeling of PA0674 shows that this receptor is predicted to be a bilobal protein, with an N-terminal domain that resembles the N-terminal periplasmic signaling domain of CSS receptors, and a C-terminal domain that resembles the periplasmic C-terminal domains of the TolA/TonB proteins. Furthermore, the sigma factor regulator both inhibits the function of the ECF sigma factor and is required for its activity. By microarray analysis we show that PUMA3 regulates the expression of a number of genes encoding potential virulence factors, including a two-partner secretion (TPS) system. Using zebrafish (Danio rerio) embryos as a host we have demonstrated that the P. aeruginosa PUMA3-induced strain is more virulent than the wild-type. PUMA3 represents the first CSS system dedicated to the transcriptional activation of virulence functions in a human pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/patogenicidade , Fator sigma/metabolismo , Fatores de Virulência/metabolismo , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/genética , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Microscopia de Fluorescência , Modelos Genéticos , Modelos Moleculares , Análise de Sequência com Séries de Oligonucleotídeos , Oligopeptídeos/metabolismo , Estabilidade Proteica , Pseudomonas aeruginosa/genética , Reprodutibilidade dos Testes , Fator sigma/genética , Fatores de Virulência/genética , Peixe-Zebra
6.
Biotechnol Adv ; 25(5): 425-41, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17524590

RESUMO

There is considerable interest in recent years in the bioconversion of forestry and agricultural residues into ethanol and value-added chemicals. High ethanol yields from lignocellulosic residues are dependent on efficient use of all the available sugars including glucose and xylose. The well-known fermentative yeast Saccharomyces cerevisiae is the preferred microorganism for ethanol production, but unfortunately, this yeast is unable to ferment xylose. Over the last 15 years, this yeast has been the subject of various research efforts aimed at improving its ability to utilize xylose and ferment it to ethanol. This review examines the research on S. cerevisiae strains that have been genetically modified or adapted to ferment xylose to ethanol. The current state of these efforts and areas where further research is required are identified and discussed.


Assuntos
Biotecnologia/métodos , Fermentação , Saccharomyces cerevisiae/genética , Xilose/metabolismo , Biomassa , Etanol/química , Engenharia Genética/métodos , Modelos Biológicos , Modelos Químicos , Oxirredução , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Xilose/química
7.
Metallomics ; 8(1): 125-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26600288

RESUMO

The Escherichia coli Fec system, consisting of an outer membrane receptor (FecA), a periplasmic substrate binding protein (FecB) and an inner membrane permease-ATPase type transporter (FecC/D), plays an important role in the uptake and transport of Fe(3+)-citrate. Although several FecB sequences from various organisms have been reported, there are no biophysical or structural data available for this protein to date. In this work, using isothermal titration calorimetry (ITC), we report for the first time the ability of FecB to bind different species of Fe(3+)-citrate as well as other citrate complexes with trivalent (Ga(3+), Al(3+), Sc(3+) and In(3+)) and a representative divalent metal ion (Mg(2+)) with low µM affinity. Interestingly, ITC experiments with various iron-free di- and tricarboxylic acids show that FecB can bind tricarboxylates with µM affinity but not biologically relevant dicarboxylates. The ability of FecB to bind with metal-free citrate is also observed in (1)H,(15)N HSQC-NMR titration experiments reported here at two different pH values. Further, differential scanning calorimetry (DSC) experiments indicate that the ligand-bound form of FecB has greater thermal stability than ligand-free FecB under all pH and ligand conditions tested, which is consistent with the idea of domain closure subsequent to ligand binding for this type of periplasmic binding proteins.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Compostos Férricos/metabolismo , Bombas de Íon/metabolismo , Metais/metabolismo , Periplasma/metabolismo , Ácidos Tricarboxílicos/metabolismo , Aminoácidos/metabolismo , Calorimetria , Varredura Diferencial de Calorimetria , Ácido Cítrico/farmacologia , Escherichia coli/efeitos dos fármacos , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio , Periplasma/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos
8.
Res Microbiol ; 160(8): 553-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19682569

RESUMO

This research presents the first extensive mutational study of N-terminal amino acids necessary for activity of a bacterial Zeta class glutathione transferase (GST). Our studies on UG30 tetrachlorohydroquinone reductive dehalogenase (PcpC) revealed that, similar to other Zeta class GSTs, N-terminal Ser and Cys residues play critical roles in glutathione binding and their mutation results in functional and structural changes to PcpC. Mutation of the N-terminal Ser and Cys residues decreased the apparent temperature optimum (by 6-10 degrees C) and maximum (by 5 degrees C) of PcpC. Also, mutation of Ser12 and Ser15 resulted in structural changes that were accompanied by the emergence of substrate inhibition. Mutation of the N-terminal Cys residue adversely affected the rate of the enzymatic reaction, but not on the metabolites formed. This study adds to the knowledge that, despite low sequence homology for the Zeta GST protein family, differences in preferred electrophilic substrates, and the manner in which glutathione is utilized in catalysis, GSTs from prokaryotic and eukaryotic organisms rely upon the same critical amino acids for glutathione binding.


Assuntos
Hidrolases/genética , Hidrolases/metabolismo , Sphingomonas/enzimologia , Sequência de Aminoácidos , Cisteína/genética , Cisteína/metabolismo , Análise Mutacional de DNA , Estabilidade Enzimática , Glutationa/metabolismo , Dados de Sequência Molecular , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Serina/genética , Serina/metabolismo , Sphingomonas/genética , Sphingomonas/metabolismo , Temperatura
9.
Biometals ; 20(3-4): 467-83, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17225063

RESUMO

TonB is a protein prevalent in a large number of Gram-negative bacteria that is believed to be responsible for the energy transduction component in the import of ferric iron complexes and vitamin B(12) across the outer membrane. We have analyzed all the TonB proteins that are currently contained in the Entrez database and have identified nine different clusters based on its conserved 90-residue C-terminal domain amino acid sequence. The vast majority of the proteins contained a single predicted cytoplasmic transmembrane domain; however, nine of the TonB proteins encompass a approximately 290 amino acid N-terminal extension homologous to the MecR1 protein, which is composed of three additional predicted transmembrane helices. The periplasmic linker region, which is located between the N-terminal domain and the C-terminal domain, is extremely variable both in length (22-283 amino acids) and in proline content, indicating that a Pro-rich domain is not a required feature for all TonB proteins. The secondary structure of the C-terminal domain is found to be well preserved across all families, with the most variable region being between the second alpha-helix and the third beta-strand of the antiparallel beta-sheet. The fourth beta-strand found in the solution structure of the Escherichia coli TonB C-terminal domain is not a well conserved feature in TonB proteins in most of the clusters. Interestingly, several of the TonB proteins contained two C-terminal domains in series. This analysis provides a framework for future structure-function studies of TonB, and it draws attention to the unusual features of several TonB proteins.


Assuntos
Proteínas de Bactérias , Biologia Computacional , Proteínas de Membrana , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Alinhamento de Sequência , Análise de Sequência de Proteína
10.
Curr Microbiol ; 53(2): 118-23, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16802208

RESUMO

All yeast xylose reductases, with the exception of that from Schizosaccharomyces pombe, possess the catalytic and coenzyme-binding elements from both the aldo-keto reductase and short-chain dehydrogenase-reductase (SDR) enzyme families in their primary sequences. In the Saccharomyces cerevisiae xylose reductase (XR), the SDR-like coenzyme-binding GXXXGXG motif (Gly motif) is located between residues 128 and 134, with the third Gly residue being replaced by an Asp. We used site-directed mutagenesis to study the role of this SDR-like Gly motif in the S. cerevisiae xylose reductase. Site-directed mutagenesis of the individual conserved Gly residue positions (G128A, G132A, D134G, and D134A) did not significantly affect the specific activity, kinetic constants (K(m), K(cat), and K(cat)/K(m)), or dissociation constants (K(d)) in any of the variants compared with the wild type. Deletion of the entire Gly motif produced an unstable protein that could not be purified. These results indicate that the SDR-like Gly motif likely provides support to the overall structure of the enzyme, but it does not contribute directly to coenzyme binding in this XR.


Assuntos
Aldeído Redutase/química , Aldeído Redutase/metabolismo , Motivos de Aminoácidos/fisiologia , Glicina/química , Saccharomyces cerevisiae/enzimologia , Aldeído Redutase/genética , Mutagênese Sítio-Dirigida , NADP/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa