Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 18(7)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630719

RESUMO

BACKGROUND: Heteronemin, a marine sesterterpenoid-type natural product, possesses an antiproliferative effect in cancer cells. In addition, heteronemin has been shown to inhibit p53 expression. Our laboratory has demonstrated that the thyroid hormone deaminated analogue, tetrac, activates p53 and induces antiproliferation in colorectal cancer. However, such drug mechanisms are still to be studied in oral cancer cells. METHODS: We investigated the antiproliferative effects by Cell Counting Kit-8 and flow cytometry. The signal transduction pathway was measured by Western blotting analyses. Quantitative PCR was used to evaluate gene expression regulated by heteronemin, 3,3',5,5'-tetraiodothyroacetic acid (tetrac), or their combined treatment in oral cancer cells. RESULTS: Heteronemin inhibited not only expression of proliferative genes and Homo Sapiens Thrombospondin 1 (THBS-1) but also cell proliferation in both OEC-M1 and SCC-25 cells. Remarkably, heteronemin increased TGF-ß1 expression in SCC-25 cells. Tetrac suppressed expression of THBS-1 but not p53 expression in both cancer cell lines. Furthermore, the synergistic effect of tetrac and heteronemin inhibited ERK1/2 activation and heteronemin also blocked STAT3 signaling. Combined treatment increased p53 protein and p53 activation accumulation although heteronemin inhibited p53 expression in both cancer cell lines. The combined treatment induced antiproliferation synergistically more than a single agent. CONCLUSIONS: Both heteronemin and tetrac inhibited ERK1/2 activation and increased p53 phosphorylation. They also inhibited THBS-1 expression. Moreover, tetrac suppressed TGF-ß expression combined with heteronemin to further enhance antiproliferation and anti-metastasis in oral cancer cells.


Assuntos
Carcinoma/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Gengivais/tratamento farmacológico , Terpenos/farmacologia , Tiroxina/análogos & derivados , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terpenos/administração & dosagem , Tiroxina/administração & dosagem , Tiroxina/farmacologia
2.
Front Cell Dev Biol ; 10: 829788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237605

RESUMO

Doxycycline, an antibiotic, displays the inhibition of different signal transduction pathways, such as anti-inflammation and anti-proliferation, in different types of cancers. However, the anti-cancer mechanisms of doxycycline via integrin αvß3 are incompletely understood. Integrin αvß3 is a cell-surface anchor protein. It is the target for estrogen, androgen, and thyroid hormone and plays a pivotal role in the proliferation, migration, and angiogenic process in cancer cells. In our previous study, thyroxine hormones can interact with integrin αvß3 to activate the extracellular signal-regulated kinase 1/2 (ERK1/2), and upregulate programmed death-ligand 1 (PD-L1) expression. In the current study, we investigated the inhibitory effects of doxycycline on proliferation in two breast cancer cell lines, MCF-7 and MDA-MB-231 cells. Doxycycline induces concentration-dependent anti-proliferation in both breast cancer cell lines. It regulates gene expressions involved in proliferation, pro-apoptosis, and angiogenesis. Doxycycline suppresses cell cyclin D1 (CCND1) and c-Myc which play crucial roles in proliferation. It also inhibits PD-L1 gene expression. Our findings show that modulation on integrin αvß3 binding activities changed both thyroxine- and doxycycline-induced signal transductions by an integrin αvß3 inhibitor (HSDVHK-NH2). Doxycycline activates phosphorylation of focal adhesion kinase (FAK), a downstream of integrin, but inhibits the ERK1/2 phosphorylation. Regardless, doxycycline-induced FAK phosphorylation is blocked by HSDVHK-NH2. In addition, the specific mechanism of action associated with pERK1/2 inhibition via integrin αvß3 is unknown for doxycycline treatment. On the other hand, our findings indicated that inhibiting ERK1/2 activation leads to suppression of PD-L1 expression by doxycycline treatment. Furthermore, doxycycline-induced gene expressions are disturbed by a specific integrin αvß3 inhibitor (HSDVHK-NH2) or a mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (ERK) kinase (MAPK/ERK, MEK) inhibitor (PD98059). The results imply that doxycycline may interact with integrin αvß3 and inhibits ERK1/2 activation, thereby regulating cell proliferation and downregulating PD-L1 gene expression in estrogen receptor (ER)-negative breast cancer MDA-MB-231 cells.

3.
Food Chem Toxicol ; 161: 112850, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35151786

RESUMO

The most common cancer, lung cancer, causes deaths worldwide. Most lung cancer patients have non-small cell lung carcinomas (NSCLCs) with a poor prognosis. The chemotherapies frequently cause resistance therefore search for new effective drugs for NSCLC patients is an urgent and essential issue. Deaminated thyroxine, tetraiodothyroacetic acid (tetrac), and its nano-analogue (NDAT) exhibit antiproliferative properties in several types of cancers. On the other hand, the most abundant secondary metabolite in the sponge Hippospongia sp., heteronemin, shows effective cytotoxic activity against different types of cancer cells. In the current study, we investigated the anticancer effects of heteronemin against two NSCLC cell lines, A549 and H1299 cells in vitro. Combined treatment with heteronemin and tetrac derivatives synergistically inhibited cancer cell growth and significantly modulated the ERK1/2 and STAT3 pathways in A549 cells but only ERK1/2 in H1299 cells. The combination treatments induce apoptosis via the caspases pathway in A549 cells but promote cell cycle arrest via CCND1 and PCNA inhibition in H1299 cells. In summary, these results suggest that combined treatment with heteronemin and tetrac derivatives could suppress signal transduction pathways essential for NSCLC cell growth. The synergetic effects can be used potentially as a therapeutic procedure for NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Terpenos/farmacologia , Tiroxina/análogos & derivados , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quimioterapia Combinada , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Tiroxina/farmacologia
4.
Front Cell Dev Biol ; 10: 862045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111333

RESUMO

Reduced fertility associated with normal aging may reflect the over-maturity of oocytes. It is increasingly important to reduce aging-induced infertility since recent trends show people marrying at later ages. 2,3,5,4'-Tetrahydroxystilbene-2-O-ß-D-glucoside (THSG), a polyphenol extracted from Polygonum multiflorum, has been reported to have anti-inflammatory and anti-aging properties. To evaluate whether THSG can reduce aging-related ovarian damage in a female mouse model of aging, THSG was administered by gavage at a dose of 10 mg/kg twice weekly, starting at 4 weeks of age in a group of young mice. In addition, the effect of THSG in a group of aged mice was also studied in mice starting at 24 weeks of age. The number of oocytes in the THSG-fed group was higher than in the untreated control group. Although the percentage of secondary polar bodies (PB2) decreased during aging in the THSG-fed group, it decreased much more slowly than in the age-matched control group. THSG administration increased the quality of ovaries in young mice becoming aged. Western blotting analyses also indicated that CYP19, PR-B, and ER-ß expressions were significantly increased in 36-week-old mice. THSG also increased oocyte numbers in aged mice compared to mice without THSG fed. Studies of qPCR and immunohistochemistry (IHC) analyses of ovaries in the aged mice groups were conducted. THSG increased gene expression of anti-Müllerian hormone (AMH), a biomarker of oocyte number, and protein accumulation in 40-week-old mice. THSG increased the expression of pgc1α and atp6, mitochondrial biogenesis-related genes, and their protein expression. THSG also attenuated the fading rate of CYP11a and CYP19 associated with sex hormone synthesis. And THSG maintains a high level of ER-ß expression, thereby enhancing the sensitivity of estrogen. Our findings indicated that THSG increased or extended gene expression involved in ovarian maintenance and rejuvenation in young and aged mice. On the other hand, THSG treatments significantly maintained oocyte quantity and quality in both groups of young and aged mice compared to each age-matched control group. In conclusion, THSG can delay aging-related menopause, and the antioxidant properties of THSG may make it suitable for preventing aging-induced infertility.

5.
Cells ; 9(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756527

RESUMO

The property of drug-resistance may attenuate clinical therapy in cancer cells, such as chemoresistance to gefitinib in colon cancer cells. In previous studies, overexpression of PD-L1 causes proliferation and metastasis in cancer cells; therefore, the PD-L1 pathway allows tumor cells to exert an adaptive resistance mechanism in vivo. Nano-diamino-tetrac (NDAT) has been shown to enhance the anti-proliferative effect induced by first-line chemotherapy in various types of cancer, including colorectal cancer (CRC). In this work, we attempted to explore whether NDAT could enhance the anti-proliferative effect of gefitinib in CRC and clarified the mechanism of their interaction. The MTT assay was utilized to detect a reduction in cell proliferation in four primary culture tumor cells treated with gefitinib or NDAT. The gene expression of PD-L1 and other tumor growth-related molecules were quantified by quantitative polymerase chain reaction (qPCR). Furthermore, the identification of PI3K and PD-L1 in treated CRC cells were detected by western blotting analysis. PD-L1 presentation in HCT116 xenograft tumors was characterized by specialized immunohistochemistry (IHC) and the hematoxylin and eosin stain (H&E stain). The correlations between the change in PD-L1 expression and tumorigenic characteristics were also analyzed. (3) The PD-L1 was highly expressed in Colo_160224 rather than in the other three primary CRC cells and HCT-116 cells. Moreover, the PD-L1 expression was decreased by gefitinib (1 µM and 10 µM) in two cells (Colo_150624 and 160426), but 10 µM gefitinib stimulated PD-L1 expression in gefitinib-resistant primary CRC Colo_160224 cells. Inactivated PI3K reduced PD-L1 expression and proliferation in CRC Colo_160224 cells. Gefitinib didn't inhibit PD-L1 expression and PI3K activation in gefitinib-resistant Colo_160224 cells. However, NDAT inhibited PI3K activation as well as PD-L1 accumulation in gefitinib-resistant Colo_160224 cells. The combined treatment of NDAT and gefitinib inhibited pPI3K and PD-L1 expression and cell proliferation. Additionally, NDAT reduced PD-L1 accumulation and tumor growth in the HCT116 (K-RAS mutant) xenograft experiment. (4) Gefitinib might suppress PD-L1 expression but did not inhibit proliferation through PI3K in gefitinib-resistant primary CRC cells. However, NDAT not only down-regulated PD-L1 expression via blocking PI3K activation but also inhibited cell proliferation in gefitinib-resistant CRCs.


Assuntos
Antígeno B7-H1/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Gefitinibe/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Poliglactina 910/farmacologia , Tiroxina/análogos & derivados , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígeno B7-H1/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Gefitinibe/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Poliglactina 910/uso terapêutico , Tiroxina/farmacologia , Tiroxina/uso terapêutico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Food Chem Toxicol ; 133: 110808, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499123

RESUMO

The obesity-regulated gene, leptin, is essential for diet. Leptin resistance causes obesity and related diseases. Certain types of diet are able to decrease leptin resistance. However, leptin has been shown to be correlated with inflammation and stimulate proliferation of various cancers. Two synthetic leptin derivatives (mimetics), OB3 and [D-Leu-4]-OB3, show more effective than leptin in reducing obesity and diabetes in mouse models. OB3 inhibits leptin-induced proliferation in ovarian cancer cells. However, effects of these mimetics in hepatocellular carcinoma (HCC) have not been investigated. In the present study, we examined the effects of OB3 and [D-Leu-4]-OB3 on cell proliferation and gene expressions in human HCC cell cultures. In contrast to what was reported for leptin, OB3 and [D-Leu-4]-OB3 reduced cell proliferation in hepatomas. Both OB3 and [D-Leu-4]-OB3 stimulated expression of pro-apoptotic genes. Both compounds also inhibited expressions of pro-inflammatory, proliferative and metastatic genes and PD-L1 expression. In combination with leptin, OB3 inhibited leptin-induced cell proliferation and expressions of pro-inflammation-, and proliferation-related genes. Furthermore, the OB3 peptide inhibited phosphoinositide 3-kinase (PI3K) activation which is essential for leptin-induced proliferation in HCC. These results indicate that OB3 and [D-Leu-4]-OB3 may have the potential to reduce leptin-related inflammation and proliferation in HCC cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Leptina/farmacologia , Fragmentos de Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa