Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(21): 11512-11517, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37196054

RESUMO

Using bulk metals as catalysts to get high efficiency in electro-reduction of CO2 is ideal but challenging. Here, we report the coupling of bulk metal electrodes and a ternary ionic-liquid-based electrolyte, 1-butyl-3-methylimidazolium tetrafluoroborate/1-dodecyl-3-methylimidazolium tetrafluoroborate/MeCN to realize highly efficient electro-reduction of CO2 to CO. Over various bulk metal electrodes, the ternary electrolyte not only increases the current density but also suppresses the hydrogen evolution reaction to obtain a high Faradaic efficiency (FE) toward CO. FECO could maintain ∼100% over a wide potential range, and metal electrodes showed very high stability in the ternary electrolyte. It is demonstrated that the aggregation behavior of the ternary electrolyte and the arrangement of two kinds of IL cations with different chain lengths in the electrochemical double layer not only increase the wettability to electrode and CO2 adsorption but also extend the diffusion channel of H+, rendering the high current density and FECO.

2.
Angew Chem Int Ed Engl ; 60(19): 10977-10982, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33694254

RESUMO

The design of catalysts with high activity, selectivity, and stability is key to the electroreduction of CO2 . Herein, we report the synthesis of 3D hierarchical metal/polymer-carbon paper (M/polymer-CP) electrodes by in situ electrosynthesis. The 3D polymer layer on CP (polymer-CP) was first prepared by in situ electropolymerization, then a 3D metal layer was decorated on the polymer-CP to produce the M/polymer-CP electrode. Electrodes with different metals (e.g. Cu, Pd, Zn, Sn) and various polymers could be prepared by this method. The electrodes could efficiently reduce CO2 to desired products, such as C2 H4 , CO, and HCOOH, depending on the metal used. For example, C2 H4 could be formed with a Faradaic efficiency of 59.4 % and a current density of 30.2 mA cm-2 by using a very stable Cu/PANI-CP electrode in an H-type cell. Control experiments and theoretical calculations showed that the 3D hierarchical structure of the metals and in situ formation of the electrodes are critical for the excellent performance.

3.
Chem Sci ; 13(16): 4616-4622, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35656144

RESUMO

Design of active catalysts for chemical utilization of methane under mild conditions is of great importance, but remains a challenging task. Here, we prepared a Ag/AgCl with SiO2 coating (Ag/AgCl@SiO2) photocatalyst for methane oxidation to carbon monoxide. High carbon monoxide production (2.3 µmol h-1) and high selectivity (73%) were achieved. SiO2 plays a key role in the superior performance by increasing the lifetime of the photogenerated charge carriers. Based on a set of semi in situ infrared spectroscopy, electron paramagnetic resonance, and electronic property characterization studies, it is revealed that CH4 is effectively and selectively oxidized to CO by the in situ formation of singlet 1O2 via the key intermediate of COOH*. Further study showed that the Ag/AgCl@SiO2 catalyst could also drive valuable conversion using real sunlight under ambient conditions. As far we know, this is the first work on the application of SiO2 modified Ag/AgCl in the methane oxidation reaction.

4.
Chem Sci ; 13(25): 7509-7515, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35872807

RESUMO

Use of multi-metallic catalysts to enhance reactions is an interesting research area, which has attracted much attention. In this work, we carried out the first work to prepare trimetallic electrocatalysts by a one-step co-electrodeposition process. A series of Cu-X-Y (X and Y denote different metals) catalysts were fabricated using this method. It was found that Cu10La1Cs1 (the content ratio of Cu2+, La3+, and Cs+ in the electrolyte is 10 : 1 : 1 in the deposition process), which had an elemental composition of Cu10La0.16Cs0.14 in the catalyst, formed a composite structure on three dimensional (3D) carbon paper (CP), which showed outstanding performance for CO2 electroreduction reaction (CO2RR) to produce ethylene (C2H4). The faradaic efficiency (FE) of C2H4 could reach 56.9% with a current density of 37.4 mA cm-2 in an H-type cell, and the partial current density of C2H4 was among the highest ones up to date, including those over the catalysts consisting of Cu and noble metals. Moreover, the FE of C2+ products (C2H4, ethanol, and propanol) over the Cu10La1Cs1 catalyst in a flow cell reached 70.5% with a high current density of 486 mA cm-2. Experimental and theoretical studies suggested that the doping of La and Cs into Cu could efficiently enhance the reaction efficiency via a combination of different effects, such as defects, change of electronic structure, and enhanced charge transfer rate. This work provides a simple method to prepare multi-metallic catalysts and demonstrates a successful example for highly efficient CO2RR using non-noble metals.

5.
ChemSusChem ; 15(18): e202201119, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35819857

RESUMO

Development of a new and green strategy for C(sp3 )-N bond cleavage is very interesting. Herein, photocatalytic cleavage of the C(sp3 )-N bond of trialkylamines was achieved, with concurrent formation of dialkylamines and olefins. It was found that a rationally designed 2D-Bi2 WO6 @1D-LaPO4 heterostructure was very efficient for the reaction due to its high light collection efficiency and unique catalytic properties. The strategy could be used for different trialkylamines, including triethylamine, tri-n-propylamine, and ethyl-di-isopropylamine. The mechanistic investigation indicated that the catalyst with heterostructure was not only favorable for charge carrier separation but also rendered excited electrons with high reduction capacity. This work opens a way for C(sp3 )-N bond cleavage of trialkylamines.


Assuntos
Alcenos , Alcenos/química , Catálise
6.
Chem Sci ; 12(11): 3937-3943, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34163663

RESUMO

CO2 methanation is an important reaction in CO2 valorization. Because of the high kinetic barriers, the reaction usually needs to proceed at higher temperature (>300 °C). High-efficiency CO2 methanation at low temperature (<200 °C) is an interesting topic, and only several noble metal catalysts were reported to achieve this goal. Currently, design of cheap metal catalysts that can effectively accelerate this reaction at low temperature is still a challenge. In this work, we found that the amorphous Co-Zr0.1-B-O catalyst could catalyze the reaction at above 140 °C. The activity of the catalyst at 180 °C reached 10.7 mmolCO2 gcat -1 h-1, which is comparable to or even higher than that of some noble metal catalysts under similar conditions. The Zr promoter in this work had the highest promoting factor to date among the catalysts for CO2 methanation. As far as we know, this is the first report of an amorphous transition metal catalyst that could effectively accelerate CO2 methanation. The outstanding performance of the catalyst could be ascribed to two aspects. The amorphous nature of the catalyst offered abundant surface defects and intrinsic active sites. On the other hand, the Zr promoter could enlarge the surface area of the catalyst, enrich the Co atoms on the catalyst surface, and tune the valence state of the atoms at the catalyst surface. The reaction mechanism was proposed based on the control experiments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa