Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893173

RESUMO

With the resistive random access memory (ReRAM) devices based on the Al/BaTiO3 (BTO)/ITO structure fabricated at hand, by cross-analyzing the resistive memory characteristics in terms of various barium titanate (BTO) film thicknesses, it is found that the device with 60 nm thick BTO can be switched more than 425 times, while the corresponding SET/RESET voltage, the on-off ratio, and the retention time are -0.69 V/0.475 V, 102, and more than 104 seconds, respectively. Furthermore, the aforementioned ReRAM with a low switching voltage and low power consumption is further integrated with a waveguide resonator in the form of a dual microdisk aligned in a parallel fashion. As the separation gap between the two microdisks is fixed at 15 µm, the ReRAM-mediated dual disk resonator would render a 180° phase reversal between the spectral outputs of the through-port and drop-port. If the gap is shortened to 10 and 5 µm, the expected phase reversal could also be retrieved due to the selective combinations of different memory states associated with each of the two ReRAM microdisks as witnessed by a series of characterization measurements.

2.
Micromachines (Basel) ; 13(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296088

RESUMO

Narrow-bandgap germanium-tin (GeSn) is employed to fabricate metal-semiconductor-metal (MSM) near-infrared photodetectors with low-dark currents and high responsivity. To reduce the dark current, the SiO2 layer is inserted in between the metal and semiconductor to increase the barrier height, albeit at the expense of photocurrent reduction. To couple more incident light into the absorption layer to enhance the responsivity, the distributed Bragg reflectors (DBRs) are deposited at the bottom of the GeSn substrate while placing the anti-reflection layer on the surface of the absorption layer. With the interdigital electrode spacing and width, both set at 5 µm and with 1 V bias applied, it is found the responsivities of the generic MSM control sample detector, the MSM with DBR, and the MSM with AR layer are 0.644 A/W, 0.716 A/W, and 1.30 A/W, respectively. The corresponding specific detectivities are 8.77 × 1010, 1.11 × 1011, and 1.77 × 1011 cm·Hz1/2/W, respectively. The measurement data show that these designs effectively enhance the photocurrent and responsivity. At 1 V bias voltage, normalized responsivity evinces that the photodetection range has been extended from 1550 nm to over 2000 nm, covering the entire telecommunication band. Incorporating GeSn as a sensing layer offers one of the new alternative avenues for IR photodetection.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa