RESUMO
The shape and design of the modern violin are largely influenced by two makers from Cremona, Italy: The instrument was invented by Andrea Amati and then improved by Antonio Stradivari. Although the construction methods of Amati and Stradivari have been carefully examined, the underlying acoustic qualities which contribute to their popularity are little understood. According to Geminiani, a Baroque violinist, the ideal violin tone should "rival the most perfect human voice." To investigate whether Amati and Stradivari violins produce voice-like features, we recorded the scales of 15 antique Italian violins as well as male and female singers. The frequency response curves are similar between the Andrea Amati violin and human singers, up to â¼4.2 kHz. By linear predictive coding analyses, the first two formants of the Amati exhibit vowel-like qualities (F1/F2 = 503/1,583 Hz), mapping to the central region on the vowel diagram. Its third and fourth formants (F3/F4 = 2,602/3,731 Hz) resemble those produced by male singers. Using F1 to F4 values to estimate the corresponding vocal tract length, we observed that antique Italian violins generally resemble basses/baritones, but Stradivari violins are closer to tenors/altos. Furthermore, the vowel qualities of Stradivari violins show reduced backness and height. The unique formant properties displayed by Stradivari violins may represent the acoustic correlate of their distinctive brilliance perceived by musicians. Our data demonstrate that the pioneering designs of Cremonese violins exhibit voice-like qualities in their acoustic output.
RESUMO
We investigated the material properties of Cremonese soundboards using a wide range of spectroscopic, microscopic, and chemical techniques. We found similar types of spruce in Cremonese soundboards as in modern instruments, but Cremonese spruces exhibit unnatural elemental compositions and oxidation patterns that suggest artificial manipulation. Combining analytical data and historical information, we may deduce the minerals being added and their potential functions-borax and metal sulfates for fungal suppression, table salt for moisture control, alum for molecular crosslinking, and potash or quicklime for alkaline treatment. The overall purpose may have been wood preservation or acoustic tuning. Hemicellulose fragmentation and altered cellulose nanostructures are observed in heavily treated Stradivari specimens, which show diminished second-harmonic generation signals. Guarneri's practice of crosslinking wood fibers via aluminum coordination may also affect mechanical and acoustic properties. Our data suggest that old masters undertook materials engineering experiments to produce soundboards with unique properties.
RESUMO
Violins made by Antonio Stradivari are renowned for having been the preferred instruments of many leading violinists for over two centuries. There have been long-standing questions about whether wood used by Stradivari possessed unique properties compared with modern tonewood for violin making. Analyses of maple samples removed from four Stradivari and a Guarneri instrument revealed highly distinct organic and inorganic compositions compared with modern maples. By solid-state 13C NMR spectroscopy, we observed that about one-third of hemicellulose had decomposed after three centuries, accompanied by signs of lignin oxidation. No apparent changes in cellulose were detected by NMR and synchrotron X-ray diffraction. By thermogravimetric analysis, historical maples exhibited reduced equilibrium moisture content. In differential scanning calorimetry measurements, only maples from Stradivari violins, but not his cellos, exhibited unusual thermooxidation patterns distinct from natural wood. Elemental analyses by inductively coupled plasma mass spectrometry suggested that Stradivari's maples were treated with complex mineral preservatives containing Al, Ca, Cu, Na, K, and Zn. This type of chemical seasoning was an unusual practice, unknown to later generations of violin makers. In their current state, maples in Stradivari violins have very different chemical properties compared with their modern counterparts, likely due to the combined effects of aging, chemical treatments, and vibrations. These findings may inspire further chemical experimentation with tonewood processing for instrument making in the 21st century.