Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Malar J ; 23(1): 180, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844987

RESUMO

BACKGROUND: Disruptions in malaria control due to COVID-19 mitigation measures were predicted to increase malaria morbidity and mortality in Africa substantially. In Uganda, long-lasting insecticidal nets (LLINs) are distributed nationwide every 3-4 years, but the 2020-2021 campaign was altered because of COVID-19 restrictions so that the timing of delivery of new nets was different from the original plans made by the National Malaria Control Programme. METHODS: A transmission dynamics modelling exercise was conducted to explore how the altered delivery of LLINs in 2020-2021 impacted malaria burden in Uganda. Data were available on the planned LLIN distribution schedule for 2020-2021, and the actual delivery. The transmission model was used to simulate 100 health sub-districts, and parameterized to match understanding of local mosquito bionomics, net use estimates, and seasonal patterns based on data collected in 2017-2019 during a cluster-randomized trial (LLINEUP). Two scenarios were compared; simulated LLIN distributions matching the actual delivery schedule, and a comparable scenario simulating LLIN distributions as originally planned. Model parameters were otherwise matched between simulations. RESULTS: Approximately 70% of the study population received LLINs later than scheduled in 2020-2021, although some areas received LLINs earlier than planned. The model indicates that malaria incidence in 2020 was substantially higher in areas that received LLINs late. In some areas, early distribution of LLINs appeared less effective than the original distribution schedule, possibly due to attrition of LLINs prior to transmission peaks, and waning LLIN efficacy after distribution. On average, the model simulations predicted broadly similar overall mean malaria incidence in 2021 and 2022. After accounting for differences in cluster population size and LLIN distribution dates, no substantial increase in malaria burden was detected. CONCLUSIONS: The model results suggest that the disruptions in the 2020-2021 LLIN distribution campaign in Uganda did not substantially increase malaria burden in the study areas.


Assuntos
COVID-19 , Mosquiteiros Tratados com Inseticida , Malária , Controle de Mosquitos , Uganda/epidemiologia , Malária/prevenção & controle , Malária/epidemiologia , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Humanos , Controle de Mosquitos/estatística & dados numéricos , Controle de Mosquitos/métodos , COVID-19/prevenção & controle , COVID-19/epidemiologia
2.
Nat Commun ; 15(1): 3230, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649361

RESUMO

Despite concern that climate change could increase the human risk to malaria in certain areas, the temperature dependency of malaria transmission is poorly characterized. Here, we use a mechanistic model fitted to experimental data to describe how Plasmodium falciparum infection of the African malaria vector, Anopheles gambiae, is modulated by temperature, including its influences on parasite establishment, conversion efficiency through parasite developmental stages, parasite development rate, and overall vector competence. We use these data, together with estimates of the survival of infected blood-fed mosquitoes, to explore the theoretical influence of temperature on transmission in four locations in Kenya, considering recent conditions and future climate change. Results provide insights into factors limiting transmission in cooler environments and indicate that increases in malaria transmission due to climate warming in areas like the Kenyan Highlands, might be less than previously predicted.


Assuntos
Anopheles , Malária Falciparum , Mosquitos Vetores , Plasmodium falciparum , Temperatura , Plasmodium falciparum/fisiologia , Malária Falciparum/transmissão , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia , Animais , Anopheles/parasitologia , Humanos , Quênia/epidemiologia , Mosquitos Vetores/parasitologia , Mudança Climática , Feminino
3.
Parasit Vectors ; 17(1): 300, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992693

RESUMO

BACKGROUND: The widespread use of insecticide-treated nets (ITNs) has significantly contributed to the reduction in malaria cases and deaths observed across Africa. Unfortunately, this control strategy is threatened by the rapid spread of pyrethroid resistance in malaria vectors. Dual-active-ingredient insecticidal nets are now available to mitigate the impact of pyrethroid resistance. To facilitate evidence-based decisions regarding product selection in specific use settings, data are needed on the efficacy of these different nets against local mosquito populations. METHODS: Two experimental hut trials were performed in Za-Kpota, southern Benin in 2021 to evaluate the performance of Interceptor G2 (BASF), Royal Guard (Disease Control Technologies) and PermaNet 3.0 (Vestergaard Frandsen), all dual-active-ingredient bednets, in comparison to untreated or standard pyrethroid-treated bednets, against free-flying wild Anopheles gambiae mosquitoes. The performance of some of these next-generation nets was compared to the same type of nets that have been in use for up to 2 years. Mosquitoes collected in the huts were followed up after exposure to assess the sublethal effects of treatments on certain life-history traits. RESULTS: The predominant species in the study site was Anopheles gambiae sensu stricto (An. gambiae s.s.). Both Anopheles coluzzii and An. gambiae s.s. were resistant to pyrethroids (deltamethrin susceptibility was restored by piperonyl butoxide pre-exposure). In the experimental hut trials, the highest blood-feeding inhibition (5.56%) was recorded for the Royal Guard net, relative to the standard PermaNet 2.0 net (44.44% inhibition). The highest 72-h mortality rate (90.11%) was recorded for the Interceptor G2 net compared to the PermaNet 2.0 net (56.04%). After exposure, the risk of death of An. gambiae sensu lato (An. gambiae s.l.) was 6.5-fold higher with the Interceptor G2 net and 4.4-fold higher with the PermaNet 3.0 net compared to the respective untreated net. Lower mosquito mortality was recorded with an aged Interceptor G2 net compared to a new Interceptor G2 net. Oviposition rates were lower in mosquitoes collected from huts containing ITNs compared to those of untreated controls. None of the mosquitoes collected from huts equipped with Royal Guard nets laid any eggs. CONCLUSIONS: The Royal Guard and Interceptor G2 nets showed a potential to significantly improve the control of malaria-transmitting vectors. However, the PermaNet 3.0 net remains effective in pyrethroid-resistant areas.


Assuntos
Anopheles , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Controle de Mosquitos , Mosquitos Vetores , Piretrinas , Animais , Anopheles/efeitos dos fármacos , Benin , Piretrinas/farmacologia , Controle de Mosquitos/métodos , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Malária/prevenção & controle , Malária/transmissão , Feminino
4.
Parasit Vectors ; 17(1): 181, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589957

RESUMO

ABSTRACT: BACKGROUND: Anopheles mosquitoes are ectothermic and involved in numerous pathogen transmissions. Their life history traits are influenced by several environmental factors such as temperature, relative humidity and photoperiodicity. Despite extensive investigations of these environmental conditions on vector population ecology, their impact on the different life stages of Anopheles at different seasons in the year remains poorly explored. This study reports the potential impact of these abiotic factors on the immature and adult stages of Anopheles gambiae sensu lato during different seasons. METHODS: Environmental conditions were simulated in the laboratory using incubators to mimic the environmental conditions of two important periods of the year in Burkina Faso: the peak of rainy season (August) and the onset of dry season (December). Eggs from wild An. coluzzii and An. gambiae s.l. were reared separately under each environmental condition. For Anopheles coluzzii or An. gambiae s.l., eggs were equally divided into two groups assigned to the two experimental conditions. Four replicates were carried out for this experiment. Then, egg hatching rate, pupation rate, larval development time, larva-to-pupae development time, adult emergence dynamics and longevity of Anopheles were evaluated. Also, pupae-to-adult development time from wild L3 and L4 Anopheles larvae was estimated under semi-field conditions in December. RESULTS: A better egg hatching rate was recorded overall with conditions mimicking the onset of the dry season compared to the peak of the rainy season. Larval development time and longevity of An. gambiae s.l. female were significantly longer at the onset of the dry season compared than at the peak of the rainy season. Adult emergence was spread over 48 and 96 h at the peak of the rainy season and onset of dry season conditions respectively. This 96h duration in the controlled conditions of December was also observed in the semi-field conditions in December. CONCLUSIONS: The impact of temperature and relative humidity on immature stages and longevity of An. gambiae s.l. adult females differed under both conditions. These findings contribute to a better understanding of vector population dynamics throughout different seasons of the year and may facilitate tailoring of control strategies.


Assuntos
Anopheles , Feminino , Animais , Estações do Ano , Burkina Faso/epidemiologia , Mosquitos Vetores , Óvulo , Larva
6.
Malariaworld J ; 3: 10, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-38854885

RESUMO

Background: Ivermectin (IVM) reduces the lifespan of malaria-transmitting mosquitoes after feeding on humans treated with IVM. If this effect is sufficiently long and strong, IVM could form part of a drug combination that not only treats malaria patients but also reduces onward transmission. Limited data are available on the exact duration of the mosquitocidal effect of IVM; daily mosquito feeding assays are required for this. Materials and Methods: We determined mortality rates of Anopheles stephensi mosquitoes that took a blood meal on Swiss mice, Wistar rats and Cynomolgus monkeys that received IVM orally at 200-400 µg/kg. Mosquito feeding assays were performed on five consecutive days after IVM administration. Mosquito mortality was determined in the first 72 hours after feeding. Results: Mosquito mortality was 70-100% when mosquitoes fed on any of the animals 1-2 days after the last IVM administration. After this time-point the mosquitocidal effect was still evident in some animals but became more variable. Conclusions: Our findings of a pronounced but short-lived mosquitocidal effect makes the timing of IVM administration crucial to form a useful addition to anti-malarial drugs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa