Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(13): 2347-2356.e8, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37311462

RESUMO

Oncogenic mutations in isocitrate dehydrogenases 1 and 2 (IDH1/2) produce 2-hydroxyglutarate (2HG), which inhibits dioxygenases that modulate chromatin dynamics. The effects of 2HG have been reported to sensitize IDH tumors to poly-(ADP-ribose) polymerase (PARP) inhibitors. However, unlike PARP-inhibitor-sensitive BRCA1/2 tumors, which exhibit impaired homologous recombination, IDH-mutant tumors have a silent mutational profile and lack signatures associated with impaired homologous recombination. Instead, 2HG-producing IDH mutations lead to a heterochromatin-dependent slowing of DNA replication accompanied by increased replication stress and DNA double-strand breaks. This replicative stress manifests as replication fork slowing, but the breaks are repaired without a significant increase in mutation burden. Faithful resolution of replicative stress in IDH-mutant cells is dependent on poly-(ADP-ribosylation). Treatment with PARP inhibitors increases DNA replication but results in incomplete DNA repair. These findings demonstrate a role for PARP in the replication of heterochromatin and further validate PARP as a therapeutic target in IDH-mutant tumors.


Assuntos
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/genética , Heterocromatina/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína BRCA2/genética , Recombinação Homóloga/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação , Isocitrato Desidrogenase/genética
2.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612868

RESUMO

Natural rare sugars are an alternative category of sweeteners with positive physiologic and metabolic effects both in in vitro and animal models. D-allulose is a D-fructose epimer that combines 70% sucrose sweetness with the advantage of an extremely low energy content. However, there are no data about the effect of D-allulose against adipose dysfunction; thus, it remains to be confirmed whether D-allulose is useful in the prevention and in treatment of adipose tissue alterations. With this aim, we evaluated D-allulose's preventive effects on lipid accumulation in 3T3-L1 murine adipocytes exposed to palmitic acid (PA), a trigger for hypertrophic adipocytes. D-allulose in place of glucose prevented adipocyte hypertrophy and the activation of adipogenic markers C/EBP-ß and PPARγ induced by high PA concentrations. Additionally, D-allulose pretreatment inhibited the NF-κB pathway and endoplasmic reticulum stress caused by PA, through activation of the Nrf2 pathway. Interestingly, these effects were also observed as D-allulose post PA treatment. Although our data need to be confirmed through in vivo models, our findings suggest that incorporating D-allulose as a glucose substitute in the diet might have a protective role in adipocyte function and support a unique mechanism of action in this sugar as a preventive or therapeutic compound against PA lipotoxicity through the modulation of pathways connected to lipid transport and metabolism.


Assuntos
Frutose , Ácido Palmítico , Animais , Camundongos , Ácido Palmítico/toxicidade , Células 3T3-L1 , Adipócitos , Hipertrofia , Estresse do Retículo Endoplasmático , Glucose
3.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335138

RESUMO

Liver cancer is one of the most common causes of cancer mortality worldwide. Chemotherapy and radiotherapy are the conventional therapies generally employed in patients with liver tumors. The major issue associated with the administration of chemotherapeutics is their high toxicity and lack of selectivity, leading to systemic toxicity that can be detrimental to the patient's quality of life. An important approach to the development of original liver-targeted therapeutic products takes advantage of the employment of biologically active ligands able to bind specific receptors on the cytoplasmatic membranes of liver cells. In this perspective, glycyrrhetinic acid (GA), a pentacyclic triterpenoid present in roots and rhizomes of licorice, has been used as a ligand for targeting the liver due to the expression of GA receptors on the sinusoidal surface of mammalian hepatocytes, so it may be employed to modify drug delivery systems (DDSs) and obtain better liver or hepatocyte drug uptake and efficacy. In the current review, we focus on the most recent and interesting research advances in the development of GA-based hybrid compounds and DDSs developed for potential employment as efficacious therapeutic options for the treatment of hepatic cancer.


Assuntos
Ácido Glicirretínico , Neoplasias Hepáticas , Animais , Materiais Biocompatíveis/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Mamíferos , Qualidade de Vida
4.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364480

RESUMO

Public health concerns associated with the potential leaching of substances from Polyethylene terephthalate (PET) packaging have been raised due to the role of phthalates as endocrine-disrupting chemicals or obesogens. In particular, changes in the environment such as pH, temperature, and irradiation can improve contaminant migration from PET food packaging. In this study, the in vitro effects of p-phthalates terephthalic acid (TPA) and dimethyl terephthalate (DMT) on murine adipocytes (3T3-L1) were evaluated using concentrations that might be obtained in adult humans exposed to contaminated sources. TPA and, in particular, DMT exposure during 3T3-L1 differentiation increased the cellular lipid content and induced adipogenic markers PPAR-γ, C/EBPß, FABP4, and FASN, starting from low nanomolar concentrations. Interestingly, the adipogenic action of TPA- and DMT-induced PPAR-γ was reverted by ICI 182,780, a specific antagonist of the estrogen receptor. Furthermore, TPA and DMT affected adipocytes' thermogenic program, reducing pAMPK and PGC-1α levels, and induced the NF-κB proinflammatory pathway. Given the observed effects of biologically relevant chronic concentrations of these p-phthalates and taking into account humans' close and constant contact with plastics, it seems appropriate that ascertaining safe levels of TPA and DMT exposure is considered a high priority.


Assuntos
Adipogenia , Polietilenotereftalatos , Humanos , Adulto , Camundongos , Animais , Polietilenotereftalatos/química , Adipócitos , Células 3T3-L1 , Termogênese , PPAR gama/metabolismo
5.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364258

RESUMO

Distillation is the most widely used method to obtain an essential oil from plant material. The biomass used in the process is returned as a solid residue together with variable amounts of water rich in water-soluble compounds, which currently are not addressed to any further application. The scope of this work was to evaluate the phytochemical composition of wastewaters coming from hydrodistillation (DWWs) of five aromatic plants belonging to the Lamiaceae family, and to assess their in vitro antioxidant and anti-inflammatory activities. The phenolic profiles of the DWWs were determined by HPLC-DAD and HPLC-ESI/MS. Free radical scavenging ability, oxygen radical antioxidant capacity and superoxide dismutase mimetic activity of the samples under study were measured. Moreover, to investigate the anti-inflammatory activity of the DWWs, an in vitro experimental model of intestinal inflammation was used. The DWW samples' phytochemical analysis allowed the identification of 37 phenolic compounds, all exhibiting good antioxidant and anti-inflammatory activity. Our study contributes to the knowledge on the polyphenolic composition of the DWWs of five aromatic plants of the Lamiaceae family. The results highlight the presence of compounds with proven biological activity, and therefore of great interest in the pharmaceutical and nutraceutical fields.


Assuntos
Lamiaceae , Lamiaceae/química , Antioxidantes/farmacologia , Antioxidantes/química , Águas Residuárias , Fenóis/química , Anti-Inflamatórios/farmacologia , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Água
6.
Molecules ; 27(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080136

RESUMO

BACKGROUND: The consumption of foods rich in anthocyanins (ACN) have been associated with beneficial properties in chronic inflammatory disorders such as intestinal bowel diseases (IBD). These effects were attributed not only to a direct antioxidant mechanism but also to the modulation of cell redox-dependent signaling. However, ACN bioavailability is low for their poor stability in the digestive tract, so ACN gastrointestinal digestion should be considered. METHODS: To have a more realistic knowledge of the effects of ACN, we performed an in vitro simulated gastrointestinal digestion of an ACN-rich purified and standardized bilberry and blackcurrant extract (BBE), followed by an evaluation of ACN composition modification (HPLC-DAD and pH differential method) and antioxidant activity (FRAP assay). Then, we studied the effects of BBE gastrointestinal extract on Caco-2 exposed to TNF-α. RESULTS: The results confirmed the high instability of ACN in the mild alkaline environment of the small intestine (17% recovery index). However, the digested BBE maintained part of its bioactivity. Additionally, BBE gastrointestinal extract inhibited the TNF-α-induced NF-κB pathway in Caco-2 and activated the Nrf2 pathway. CONCLUSIONS: Although ACN stability is affected by gastrointestinal digestion, the anti-inflammatory and antioxidant activity of digested extracts were confirmed; thus, the loss of ACN can probably be counterweighed by their metabolites. Then, ACN introduced by diet or food supplements could represent an approach for IBD prevention.


Assuntos
Doenças Inflamatórias Intestinais , Ribes , Antocianinas/metabolismo , Antocianinas/farmacologia , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Células CACO-2 , Células Epiteliais , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Extratos Vegetais/química , Ribes/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Phytother Res ; 35(8): 4616-4625, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33822421

RESUMO

The spread of SARS-CoV-2, along with the lack of targeted medicaments, encouraged research of existing drugs for repurposing. The rapid response to SARS-CoV-2 infection comprises a complex interaction of cytokine storm, endothelial dysfunction, inflammation, and pathologic coagulation. Thus, active molecules targeting multiple steps in SARS-CoV-2 lifecycle are highly wanted. Herein we explored the in silico capability of silibinin from Silybum marianum to interact with the SARS-CoV-2 main target proteins, and the in vitro effects against cytokine-induced-inflammation and dysfunction in human umbilical vein endothelial cells (HUVECs). Computational analysis revealed that silibinin forms a stable complex with SARS-CoV-2 spike protein RBD, has good negative binding affinity with Mpro, and interacts with many residues on the active site of Mpro, thus supporting its potentiality in inhibiting viral entry and replication. Moreover, HUVECs pretreatment with silibinin reduced TNF-α-induced gene expression of the proinflammatory genes IL-6 and MCP-1, as well as of PAI-1, a critical factor in coagulopathy and thrombosis, and of ET-1, a peptide involved in hemostatic vasoconstriction. Then, due to endothelium antiinflammatory and anticoagulant properties of silibinin and its capability to interact with SARS-CoV-2 main target proteins demonstrated herein, silibinin could be a strong candidate for COVID-19 management from a multitarget perspective.


Assuntos
Células Endoteliais/efeitos dos fármacos , Peptídeo Hidrolases , SARS-CoV-2 , Silibina , COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , Silibina/farmacologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores
8.
Chem Biodivers ; 18(12): e2100607, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34643021

RESUMO

In this article, we investigated the in vitro potential beneficial effects of the anthocyanin cyanidin-3-O-glucoside (C3G) on inflammation and insulin resistance markers induced by palmitic acid (PA) in human SGBS adipocytes. Results demonstrated that PA reduced insulin sensitivity in SGBS cells with a significant inhibition of Akt phosphorylation, with a higher sensitivity to PA than murine 3T3-L1 adipocytes, GLUT-1 and GLUT-4 glucose transporters and the enzyme hexokinase-II. C3G pretreatment (1-20 µM) reverted these effects. Moreover, we demonstrated, for the first time in human adipocytes, that cells exposure to PA induced gene expression of proinflammatory cytokines TNF-α, IL-6, IL-8, and MCP-1. Cells pretreatment with C3G resulted in a reduction in mRNA levels starting at very low concentrations (1 µM). In conclusion, this study highlights the effects of PA on inflammation and insulin resistance markers in human adipocytes, and confirm the role of C3G in the prevention of lipotoxicity in dysfunctional adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Antocianinas/farmacologia , Citocinas/genética , Inflamação/tratamento farmacológico , Ácido Palmítico/farmacologia , Células 3T3-L1 , Animais , Antocianinas/química , Relação Dose-Resposta a Droga , Humanos , Inflamação/metabolismo , Camundongos
9.
Chem Biodivers ; 18(8): e2100316, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34114723

RESUMO

The genus Rhanterium (Asteraceae) is a widely distributed medicinal plant throughout western North Africa and some Rhanterium species are used in folk medicine. The aim of research was to investigate methanolic extracts from different parts (flowers, leaves, and stems) of Tunisian Rhanterium suaveolens as potential sources of bioactive products useful for healthy purposes. In particular, were analyzed the phenolic composition of these extracts and their antioxidant, anti-inflammatory, and anti-tyrosinase properties. The phytochemical analyses were performed using standard colorimetric procedures, HPLC-DAD and HPLC-DAD-ESI-MS. Then, several in vitro cell-free assays have been used to estimate the antioxidant/free radical scavenging capability of the extracts. Moreover, in vitro, and in vivo anti-melanogenesis activities of these extracts were tested, respectively, with the tyrosinase inhibition assay and the Zebrafish embryo model. Finally, the anti-inflammatory potential of these extracts in an in vitro model of acute intestinal inflammation in differentiated Caco-2 cells was evaluated. The R. suaveolens extracts under study appeared particularly rich in flavonols and hydroxycinnamic acids and all extracts appeared endowed with good antioxidant/free radical scavenging properties, being the flower extracts slightly more active than the others. Moreover, R. suaveolens flowers extract was able to inhibit in vitro tyrosinase activity and exhibited bleaching effects on the pigmentation of zebrafish embryos. Furthermore, all extracts showed good anti-inflammatory activity in intestinal epithelial cells as demonstrated by the inhibition of TNF-α-induced gene expression of IL-6 and IL-8. R. suaveolens aerial parts may be considered as a potential source of whitening agents, as well as of agents for the treatment of disorders related to oxidative stress and inflammation.


Assuntos
Anti-Inflamatórios/química , Asteraceae/química , Inibidores Enzimáticos/química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/química , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Asteraceae/metabolismo , Células CACO-2 , Diferenciação Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos/química , Ácidos Cumáricos/isolamento & purificação , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/farmacologia , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Flavonóis/química , Flavonóis/isolamento & purificação , Flavonóis/metabolismo , Flavonóis/farmacologia , Humanos , Melaninas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/metabolismo , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Tunísia , Peixe-Zebra/metabolismo
10.
Chem Biodivers ; 18(6): e2100185, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33860977

RESUMO

The genus Rumex (Polygonaceae) is distributed worldwide and the different species belonging to it are used in traditional medicine. The present study aimed at the evaluation of the phytochemical profile and the biochemical properties of methanolic extracts from different parts (roots, stems, and leaves) of Rumex roseus, a wild local Tunisian plant traditionally used as food. The phytochemical analysis on the extracts was performed using standard colorimetric procedures, HPLC-DAD, and HPLC-DAD-ESI-MS; then, several in vitro cell-free assays have been used to estimate their antioxidant/free radical scavenging capability (TAC-PM, DPPH, TEAC, FRAP, ORAC, SOD-like activity, and HOCl-induced albumin degradation). Additionally, anti-inflammatory effect of these extracts was evaluated in an in vitro model of acute intestinal inflammation in differentiated Caco-2 cells. The results showed that the methanolic extracts from stems and, especially, leaves contain substantial amounts of flavones (apigenin and luteolin, together with their derivatives), while the extract from roots is characterized by the presence of tannins and quinic acid derivatives. All the extracts appeared endowed with excellent antioxidant/free radical scavenging properties. In particular, the extract from roots was characterized by a remarkable activity, probably due to its different and peculiar polyphenolic composition. Furthermore, both Rumex roseus roots and stems extracts demonstrated an anti-inflammatory effect in intestinal epithelial cells, reducing TNF-α-induced gene expression of IL-6 and IL-8. In conclusion, R. roseus methanolic extracts have shown to be potential sources of bioactive compounds to be used in the prevention and treatment of pathologies related to oxidative stress and inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Metanol/química , Compostos Fitoquímicos/farmacologia , Rumex/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Células CACO-2 , Bovinos , Células Cultivadas , Humanos , Camundongos , Células NIH 3T3 , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Picratos/antagonistas & inibidores , Soroalbumina Bovina/antagonistas & inibidores
11.
Molecules ; 26(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361819

RESUMO

One of the main current strategies for cancer treatment is represented by combination chemotherapy. More recently, this strategy shifted to the "hybrid strategy", namely the designing of a new molecular entity containing two or more biologically active molecules and having superior features compared with the individual components. Moreover, the term "hybrid" has further extended to innovative drug delivery systems based on biocompatible nanomaterials and able to deliver one or more drugs to specific tissues or cells. At the same time, there is an increased interest in plant-derived polyphenols used as antitumoral drugs. The present review reports the most recent and intriguing research advances in the development of hybrids based on the polyphenols curcumin and resveratrol, which are known to act as multifunctional agents. We focused on two issues that are particularly interesting for the innovative chemical strategy involved in their development. On one hand, the pharmacophoric groups of these compounds have been used for the synthesis of new hybrid molecules. On the other hand, these polyphenols have been introduced into hybrid nanomaterials based on gold nanoparticles, which have many potential applications for both drug delivery and theranostics in chemotherapy.


Assuntos
Produtos Biológicos/uso terapêutico , Curcumina/uso terapêutico , Neoplasias/tratamento farmacológico , Resveratrol/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Produtos Biológicos/química , Curcumina/química , Sistemas de Liberação de Medicamentos , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Resveratrol/química , Estilbenos/química
12.
Arch Biochem Biophys ; 691: 108488, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32692982

RESUMO

Obesity is a metabolic disorder characterized by excess adipose tissue, macrophages infiltration, and inflammation which in turn lead to insulin-resistance. Epidemiological evidences reported that anthocyanins possess not only high antioxidant and antiinflammatory activities, but also improve metabolic complications associated with obesity. The aim of this work was to evaluate the in vitro beneficial effects of cyanidin-3-O-glucoside (C3G) in counteracting inflammation and insulin-resistance in 3T3-L1 hypertrophic adipocytes exposed to palmitic acid (PA). In the present study murine 3T3-L1 adipocytes were pretreated with C3G for 24 h and then exposed to palmitic acid (PA) for 24 h. Real-time PCR, western blotting analysis and Oil Red O staining were applied for investigating the mechanism involved in adipocytes dysfunction. C3G pretreatment reduced lipid accumulation, PPARγ pathway and NF-κB pathway induced by PA in murine adipocytes. In addition, our data demonstrated that PA reduced insulin signaling via IRS-1 Ser307phosphorylation while C3G dose-dependently improved insulin sensitivity restoring IRS-1/PI3K/Akt pathway. Furthermore, C3G improved adiponectin mRNA levels altered by PA in 3T3-L1 murine and SGBS human adipocytes. Herein reported data demonstrate that C3G ameliorated adipose tissue dysfunction, thus suggesting new potential roles for this compound of nutritional interest in the prevention of pathological conditions linked to obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Antocianinas/farmacologia , Glucosídeos/farmacologia , Inflamação/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Adiponectina/metabolismo , Animais , Proteínas de Ligação a Ácido Graxo/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Humanos , Resistência à Insulina/fisiologia , Camundongos , NF-kappa B/metabolismo , PPAR gama/metabolismo , Ácido Palmítico/farmacologia
13.
Chem Biodivers ; 17(8): e2000345, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32501568

RESUMO

The present study is aimed at the evaluation of the phytochemical profile and the biochemical properties of methanolic extracts obtained from different parts of Rumex algeriensis and Rumex tunetanus, two relict species limited to the North Africa. Phytochemical analyses of these extracts were performed using standard colorimetric procedures, HPLC-DAD, and HPLC-DAD-ESI/MS, and their antioxidant/free radical scavenging capability was estimated through several in vitro cell-free assays. Moreover, the anti-inflammatory potential of these extracts was demonstrated in an in vitro model of acute intestinal inflammation using differentiated Caco-2 cells. The results showed that all the extracts appeared endowed with excellent antioxidant/free radical scavenging properties. In particular, the extracts from both R. algeriensis and R. tunetanus flowers, and that from R. algeriensis stems were characterized by a remarkable SOD-like and NO-scavenging activity, as well as by the capability to protect albumin against HClO-induced degradation. Furthermore, the extracts from flowers of both Rumex species, as well as R. algeriensis stems, showed an anti-inflammatory effect in intestinal epithelial cells, as demonstrated by the inhibition of TNF-α-induced gene expression of IL-6 and IL-8. In conclusion, R. algeriensis and R. tunetanus have shown to be potential sources of bioactive products to be used in the prevention and treatment of pathologies related to oxidative stress and inflammation.


Assuntos
Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rumex/química , Anti-Inflamatórios/farmacologia , Células CACO-2 , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Metanol/química , Estresse Oxidativo/efeitos dos fármacos , Rumex/classificação , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray/métodos
14.
Molecules ; 25(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708833

RESUMO

This review deals with hydrogels as soft and biocompatible vehicles for the delivery of plant-derived (poly)phenols, compounds with low general toxicity and an extraordinary and partially unexplored wide range of biological properties, whose use presents some major issues due to their poor bioavailability and water solubility. Hydrogels are composed of polymeric networks which are able to absorb large amounts of water or biological fluids while retaining their three-dimensional structure. Apart from this primary swelling capacity, hydrogels may be easily tailored in their properties according to the chemical structure of the polymeric component in order to obtain smart delivery systems that can be responsive to various internal/external stimuli. The functionalization of the polymeric component of hydrogels may also be widely exploited to facilitate the incorporation of bioactive compounds with different physicochemical properties into the system. Several prototype hydrogel systems have been designed for effective polyphenol delivery and potential employment in the treatment of human diseases. Therefore, the inherent features of hydrogels have been the focus of considerable research efforts over the past few decades. Herein, we review the most recent advances in (poly)phenol-loaded hydrogels by analyzing them primarily from the therapeutic perspective and highlighting the innovative aspects in terms of design and chemistry.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis/química , Polifenóis/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Disponibilidade Biológica , Humanos , Hidrogéis/farmacologia , Polímeros/química , Polímeros/farmacologia , Polifenóis/uso terapêutico
15.
Phytother Res ; 33(7): 1888-1897, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31155812

RESUMO

Increased adiposity has been associated with adipose tissue low-grade inflammation leading to insulin resistance. Adipocyte differentiation inhibitors are expected to be effective in preventing obesity and related diseases. Anthocyanins (ACNs) are associated to enhanced adipocyte function and protection from metabolic stress. Herein, we evaluated the in vitro protective effects of an ACN rich extract against palmitic acid (PA)-induced hypertrophy, inflammation, and insulin resistance in 3T3-L1 adipocytes. ACN extract pretreatment reduces lipid accumulation and peroxisome proliferators-activated receptor-γ protein levels induced by PA. In addition, PA induces inflammation with activation of NF-κB pathway, whereas ACN extract pretreatment dose-dependently inhibited this pathway. Furthermore, adipocyte dysfunction associated with hypertrophy induces insulin resistance by affecting phosphatidylinositol 3-kinase-protein kinase B/Akt axis, GLUT-1, and adiponectin mRNA levels. ACN extract pretreatment reverts these effects induced by PA and moreover was able to induce insulin pathway with levels higher than insulin control cells, supporting an insulin sensitizer role for ACNs. This study demonstrates a prevention potential of ACNs against obesity comorbidities, due to their protective effects against inflammation/insulin resistance in adipocytes. In addition, these results contribute to the knowledge and strategies on the evaluation of the mechanism of action of ACNs from a food source under basal and insulin resistance conditions related to obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Antocianinas/farmacologia , Anti-Inflamatórios/farmacologia , Resistência à Insulina , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Hipertrofia , Camundongos , Ácido Palmítico
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(3): 351-357, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28011403

RESUMO

Increased plasma levels of free fatty acids, including palmitic acid (PA), cause insulin resistance in endothelium characterized by a decreased synthesis of insulin-mediated vasodilator nitric oxide (NO), and by an increased production of the vasoconstrictor protein, endothelin-1. Several in vitro and in vivo studies suggest that anthocyanins, natural phenols commonly present in food and vegetables from Mediterranean Diet, exert significant cardiovascular health-promoting activities. These effects are possibly mediated by a positive regulation of the transcription factor Nrf2 and activation of cellular antioxidant and cytoprotective genes. The present study examined, at a molecular level, the effects of cyanidin-3-O-glucoside (C3G), a widely distributed anthocyanin, on PA-induced endothelial dysfunction and insulin resistance in human umbilical vein endothelial cells (HUVECs). Our results indicate that C3G pretreatment effectively reverses the effects of PA on PI3K/Akt axis, and restores eNOS expression and NO release, altered by PA. We observed that these effects were exerted by changes on the phosphorylation of IRS-1 on specific serine and tyrosine residues modulated by PA through the modulation of JNK and IKK activity. Furthermore, silencing Nrf2 transcripts demonstrated that the protective effects of C3G are directly related to the activation of Nrf2.


Assuntos
Antocianinas/farmacologia , Endotélio Vascular/efeitos dos fármacos , Glucosídeos/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Ácido Palmítico/farmacologia , Antioxidantes/metabolismo , Células Cultivadas , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tirosina/metabolismo
17.
Mediators Inflamm ; 2017: 3454023, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28373746

RESUMO

Intestinal epithelium represents a protective physical barrier and actively contributes to the mucosal immune system. Polarized basolateral intestinal secretion of inflammatory mediators, followed by activation of NF-κB signaling and inflammatory pathways in endothelial cells, efficiently triggers extravasation of neutrophils from the vasculature, therefore contributing to the development and maintenance of intestinal inflammation. Proper regulation of NF-κB activation at the epithelial interface is crucial for the maintenance of physiological tissue homeostasis. Many papers reported that anthocyanins, a group of compounds belonging to flavonoids, possess anti-inflammatory effects and modulate NF-κB activity. In this study, by using a coculture in vitro system, we aimed to evaluate the effects of TNF-α-stimulated intestinal cells on endothelial cells activation, as well as the protective effects of cyanidin-3-glucoside (C3G). In this model, TNF-α induced nuclear translocation of NF-κB and TNF-α and IL-8 gene expression in Caco-2 cells, whereas C3G pretreatment dose-dependently reduced these effects. Furthermore, TNF-α-stimulated Caco-2 cells induced endothelial cells activation with increased E-selectin and VCAM-1 mRNA, leukocyte adhesion, and NF-κB levels in HUVECs, which were inhibited by C3G. We demonstrated that selective inhibition of the NF-κB pathway in epithelial cells represents the main mechanism by which C3G exerts these protective effects. Thus, anthocyanins could contribute to the management of chronic gut inflammatory diseases.


Assuntos
Antocianinas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glucosídeos/farmacologia , Intestinos/citologia , Células CACO-2 , Selectina E/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Immunoblotting , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
18.
Parasitol Res ; 116(9): 2471-2477, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28702801

RESUMO

Anisakis spp. is a parasitic nematode whose infective third-stage larvae may be found within the flesh of fish species commonly consumed by humans. Thorough cooking or freezing should render the fish safe for consumption; furthermore, marinating solutions containing biocidal agents might have a significant action against Anisakis larvae. Some studies suggest a relationship between some parasitic infections and development of inflammatory bowel disorders, and Anisakis infection might be a risk factor for stomach or colon cancer. The aim of our study was to investigate if crude extracts (CEs) obtained from Anisakis larvae marinated in a solution with added allyl isothiocyanate (ACE-AITC) and frozen, or from frozen only Anisakis larvae (ACE), can induce an inflammatory effect on in vitro differentiated colonic Caco-2 cells exposed or not to LPS. Caco-2 exposure to the two CEs induced a marked COX-2 expression and potentiated LPS-induced COX-2 overexpression, confirming that substances present in Anisakis larvae can induce an inflammatory response in the intestinal epithelium, possibly also exacerbating the effects of other inflammatory stimuli. ACE induced a marked decrease in caspase-3 activation, while AITC-ACE increased its activation. However, LPS-induced caspase-3 activation appeared lower in cells treated with ACE and with the lower concentration of AITC-ACE. Thus, it is evident that Anisakis CEs may affect various cell pathways crucial not only in the inflammatory process but also in cell growth and death. Thus, CEs obtained from nonviable Anisakis larvae retain or are otherwise provided with noxious properties able to induce a strong inflammation response in intestinal epithelial cells. Furthermore, their influence may persist also following pretreatment with the biocidal agent AITC, indicating that the harmful substances contained in crude extracts from Anisakis larvae are resistant to the thermal or biocidal agent treatments.


Assuntos
Anisakis , Colo/parasitologia , Gastroenterite/parasitologia , Inflamação/parasitologia , Animais , Anisakis/fisiologia , Células CACO-2 , Extratos Celulares/toxicidade , Colo/patologia , Peixes/parasitologia , Humanos , Isotiocianatos , Larva , Estômago/patologia
20.
Drug Chem Toxicol ; 37(1): 32-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24195653

RESUMO

Urban areas represent major pollution sources as a result of anthropogenic activities located in these districts. Among the legislated air pollutants, polycyclic aromatic hydrocarbons (PAHs), which are mostly adsorbed on the surface of dust particles, are known for their adverse health effects. The present study has been carried out to examine the cytotoxic effects induced in vitro on human peripheral monocytes (PBMCs) by extractable organic matter (EOM) from PM10 (characterized for its PAH content) collected at four sites in the urban center of Messina, Italy. Chromatographic analyses showed the presence of PAHs in all EOM. Only EOM from one site induced a marked cell death probably resulting from the highest PAH content in this sample. Conversely, apoptosis activation was evident after PBMC exposure to all the EOM tested. These apoptotic effects do not appear related only to the total PAH content, but are probably influenced by chemical composition. In conclusion, our findings confirm that the cytotoxic potential of organic matter associated to ambient respirable air particles depends predominantly on the quantity and quality of the chemicals contained in it. In particular, the present data strongly evidence that the only evaluation of air concentration of particulate matter and benzo[a]pyrene, as well as the generally used risk models based on additivity, are not sufficient to evaluate air quality and PAH effect on human health because they do not take into account the possible inhibitory or synergic or antagonistic effect of combined exposure and the interference of other organic compounds present in respirable matter.


Assuntos
Poluição do Ar/efeitos adversos , Extratos Celulares/toxicidade , Cidades , Monitoramento Ambiental/estatística & dados numéricos , Leucócitos/efeitos dos fármacos , Material Particulado/análise , Material Particulado/toxicidade , Análise de Variância , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida , Monitoramento Ambiental/normas , Humanos , Itália , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa