Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Nature ; 627(8004): 564-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418889

RESUMO

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Assuntos
Biodiversidade , Florestas , Mapeamento Geográfico , Árvores , Modelos Biológicos , Especificidade da Espécie , Árvores/classificação , Árvores/fisiologia , Clima Tropical
2.
New Phytol ; 238(4): 1351-1361, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36727281

RESUMO

Heritable fungal endosymbiosis is underinvestigated in plant biology and documented in only three plant families (Convolvulaceae, Fabaceae, and Poaceae). An estimated 40% of morning glory species in the tribe Ipomoeeae (Convolvulaceae) have associations with one of two distinct heritable, endosymbiotic fungi (Periglandula and Chaetothyriales) that produce the bioactive metabolites ergot alkaloids, indole diterpene alkaloids, and swainsonine, which have been of interest for their toxic effects on animals and potential medical applications. Here, we report the occurrence of ergot alkaloids, indole diterpene alkaloids, and swainsonine in the Convolvulaceae; and the fungi that produce them based on synthesis of previous studies and new indole diterpene alkaloid data from 27 additional species in a phylogenetic, geographic, and life-history context. We find that individual morning glory species host no more than one metabolite-producing fungal endosymbiont (with one possible exception), possibly due to costs to the host and overlapping functions of the alkaloids. The symbiotic morning glory lineages occur in distinct phylogenetic clades, and host species have significantly larger seed size than nonsymbiotic species. The distinct and widely distributed endosymbiotic relationships in the morning glory family and their alkaloids provide an accessible study system for understanding heritable plant-fungal symbiosis evolution and their potential functions for host plants.


Assuntos
Alcaloides , Convolvulaceae , Alcaloides de Claviceps , Ipomoea , Animais , Convolvulaceae/metabolismo , Convolvulaceae/microbiologia , Swainsonina/metabolismo , Filogenia , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea/microbiologia , Alcaloides de Claviceps/metabolismo , Alcaloides/metabolismo , Alcaloides Diterpenos
3.
Mol Ecol ; 31(4): 1142-1159, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839548

RESUMO

The rapid invasion of the non-native Phragmites australis (Poaceae, subfamily Arundinoideae) is a major threat to native wetland ecosystems in North America and elsewhere. We describe the first reference genome for P. australis and compare invasive (ssp. australis) and native (ssp. americanus) genotypes collected from replicated populations across the Laurentian Great Lakes to deduce genomic bases driving its invasive success. Here, we report novel genomic features including a Phragmites lineage-specific whole genome duplication, followed by gene loss and preferential retention of genes associated with transcription factors and regulatory functions in the remaining duplicates. Comparative transcriptomic analyses revealed that genes associated with biotic stress and defence responses were expressed at a higher basal level in invasive genotypes, but native genotypes showed a stronger induction of defence responses when challenged by a fungal endophyte. The reference genome and transcriptomes, combined with previous ecological and environmental data, add to our understanding of mechanisms leading to invasiveness and support the development of novel, genomics-assisted management approaches for invasive Phragmites.


Assuntos
Ecossistema , Poaceae , Genótipo , Repetições de Microssatélites , Poaceae/genética , Áreas Alagadas
4.
Mol Ecol ; 31(9): 2698-2711, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35231145

RESUMO

A vector's susceptibility and ability to transmit a pathogen-termed vector competency-determines disease outcomes, yet the ecological factors influencing tick vector competency remain largely unknown. Ixodes pacificus, the tick vector of Borrelia burgdorferi (Bb) in the western U.S., feeds on rodents, birds, and lizards. Rodents and birds are reservoirs for Bb and infect juvenile ticks, while lizards are refractory to Bb and cannot infect feeding ticks. Additionally, the lizard bloodmeal contains borreliacidal properties, clearing previously infected feeding ticks of their Bb infection. Despite I. pacificus feeding on a range of hosts, it is undetermined how the host identity of the larval bloodmeal affects future nymphal vector competency. We experimentally evaluate the influence of larval host bloodmeal on Bb acquisition by nymphal I. pacificus. Larval I. pacificus were fed on either lizards or mice and after molting, nymphs were fed on Bb-infected mice. We found that lizard-fed larvae were significantly more likely to become infected with Bb during their next bloodmeal than mouse-fed larvae. We also conducted the first RNA-seq analysis on whole-bodied I. pacificus and found significant upregulation of tick antioxidants and antimicrobial peptides in the lizard-fed group. Our results indicate that the lizard bloodmeal significantly alters vector competency and gene regulation in ticks, highlighting the importance of host bloodmeal identity in vector-borne disease transmission and upends prior notions about the role of lizards in Lyme disease community ecology.


Assuntos
Ixodes , Lagartos , Doença de Lyme , Animais , Aves , Vetores de Doenças , Expressão Gênica , Ixodes/genética , Larva/genética , Lagartos/genética , Doença de Lyme/genética , Camundongos , Ninfa/genética , Roedores
5.
Phytopathology ; 112(10): 2044-2051, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35502928

RESUMO

For many plant-pathogenic or endophytic fungi, production of mycotoxins, which are toxic to humans, may present a fitness gain. However, associations between mycotoxin production and plant pathogenicity or virulence is inconsistent and difficult due to the complexity of these host-pathogen interactions and the influences of environmental and insect factors. Aflatoxin receives a lot of attention due to its potent toxicity and carcinogenicity but the connection between aflatoxin production and pathogenicity is complicated by the pathogenic ability and prevalence of nonaflatoxigenic isolates in crops. Other toxins directly aid fungi in planta, trichothecenes are important virulence factors, and ergot alkaloids limit herbivory and fungal consumption due to insect toxicity. We review a panel discussion at the American Phytopathological Society's Plant Health 2021 conference, which gathered diverse experts representing different research sectors, career stages, ethnicities, and genders to discuss the diverse roles of mycotoxins in the lifestyles of filamentous fungi of the families Clavicipitaceae, Trichocomaceae (Eurotiales), and Nectriaceae (Hypocreales).


Assuntos
Aflatoxinas , Alcaloides de Claviceps , Micotoxinas , Tricotecenos , Ecossistema , Feminino , Fungos , Humanos , Masculino , Micotoxinas/toxicidade , Doenças das Plantas , Fatores de Virulência
6.
Exp Appl Acarol ; 84(3): 607-622, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34148204

RESUMO

Smartphone cameras and digital devices are increasingly used in the capture of tick images by the public as citizen scientists, and rapid advances in deep learning and computer vision has enabled brand new image recognition models to be trained. However, there is currently no web-based or mobile application that supports automated classification of tick images. The purpose of this study was to compare the accuracy of a deep learning model pre-trained with millions of annotated images in Imagenet, against a shallow custom-build convolutional neural network (CNN) model for the classification of common hard ticks present in anthropic areas from northeastern USA. We created a dataset of approximately 2000 images of four tick species (Ixodes scapularis, Dermacentor variabilis, Amblyomma americanum and Haemaphysalis sp.), two sexes (male, female) and two life stages (adult, nymph). We used these tick images to train two separate CNN models - ResNet-50 and a simple shallow custom-built. We evaluated our models' performance on an independent subset of tick images not seen during training. Compared to the ResNet-50 model, the small shallow custom-built model had higher training (99.7%) and validation (99.1%) accuracies. When tested with new tick image data, the shallow custom-built model yielded higher mean prediction accuracy (80%), greater confidence of true detection (88.7%) and lower mean response time (3.64 s). These results demonstrate that, with limited data size for model training, a simple shallow custom-built CNN model has great prospects for use in the classification of common hard ticks present in anthropic areas from northeastern USA.


Assuntos
Ixodes , Ixodidae , Amblyomma , Animais , Feminino , Masculino , Redes Neurais de Computação , Ninfa
7.
New Phytol ; 222(3): 1573-1583, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30664252

RESUMO

Colonization by foliar endophytic fungi can affect the expression of host plant defenses and other ecologically important traits. However, whether endophyte colonization affects the uptake or redistribution of resources within and among host plant tissues remains unstudied. We inoculated leaves of Theobroma cacao with four common colonizers that range in their effect from protective to pathogenic (Colletotrichum tropicale, Pestalotiopsis sp., Colletotrichum theobromicola, or Phytophthora palmivora). We pulsed the soil with nitrogen-15 (15 N) and then traced 15 N uptake and its subsequent distribution to whole plants and individual leaves. At a whole-plant level, C. tropicale-inoculated plants showed significantly greater 15 N uptake than endophyte-free plants did in the same pot. Among leaves within plants, younger leaves were particularly enriched in 15 N, but endophyte inoculation at the individual leaf level did not alter 15 N distribution within plants. However, leaves co-inoculated with pathogenic Phytophthora and protective C. tropicale experienced significantly elevated 15 N content as pathogen damage increased, compared with leaves inoculated only with the pathogen. Further, endophyte-pathogen co-infection also increased total plant biomass. Our results indicate that colonization by foliar endophytes significantly affects N uptake and distribution among and within host plants in ways that appear to be context dependent on other microbiome components.


Assuntos
Cacau/metabolismo , Cacau/microbiologia , Colletotrichum/fisiologia , Endófitos/fisiologia , Nitrogênio/metabolismo , Folhas de Planta/microbiologia , Biomassa , Modelos Lineares , Isótopos de Nitrogênio , Phytophthora
8.
J Chem Ecol ; 45(10): 879-887, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31686336

RESUMO

Many species of morning glories (Convolvulaceae) form symbioses with seed-transmitted Periglandula fungal endosymbionts, which produce ergot alkaloids and may contribute to defensive mutualism. Allocation of seed-borne ergot alkaloids to various tissues of several Ipomoea species has been demonstrated, including roots of I. tricolor. The goal of this study was to determine if infection of I. tricolor by the Periglandula sp. endosymbiont affects Southern root-knot nematode (Meloidogyne incognita) gall formation and host plant biomass. We hypothesized that I. tricolor plants infected by Periglandula (E+) would develop fewer nematode-induced galls compared to non-symbiotic plants (E-). E+ or E- status of plant lines was confirmed by testing methanol extracts from individual seeds for endosymbiont-produced ergot alkaloids. To test the effects of Periglandula on nematode colonization, E+ and E- I. tricolor seedlings were grown in soil infested with high densities of M. incognita nematodes (N+) or no nematodes (N-) for four weeks in the greenhouse before harvesting. After harvest, nematode colonization of roots was visualized microscopically, and total gall number and plant biomass were quantified. Four ergot alkaloids were detected in roots of E+ plants, but no alkaloids were found in E- plants. Gall formation was reduced by 50% in E+ plants compared to E- plants, independent of root biomass. Both N+ plants and E+ plants had significantly reduced biomass compared to N- and E- plants, respectively. These results demonstrate Periglandula's defensive role against biotic enemies, albeit with a potential trade-off with host plant growth.


Assuntos
Alcaloides de Claviceps/química , Hypocreales/metabolismo , Ipomoea/parasitologia , Tylenchoidea/fisiologia , Animais , Biomassa , Cromatografia Líquida de Alta Pressão , Alcaloides de Claviceps/análise , Ipomoea/química , Ipomoea/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Tumores de Planta/parasitologia , Sementes/química , Sementes/metabolismo , Solo/parasitologia , Espectrometria de Massas por Ionização por Electrospray , Simbiose
9.
Biochem Syst Ecol ; 862019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31496550

RESUMO

Convolvulaceous species have been reported to contain several bioactive principles thought to be toxic to livestock including the calystegines, swainsonine, ergot alkaloids, and indole diterpene alkaloids. Swainsonine, ergot alkaloids, and indole diterpene alkaloids are produced by seed transmitted fungal symbionts associated with their respective plant host, while the calystegines are produced by the plant. To date, Ipomoea asarifolia and Ipomoea muelleri represent the only Ipomoea species and members of the Convolvulaceae known to contain indole diterpene alkaloids, however several other Convolvulaceous species are reported to contain ergot alkaloids. To further explore the biodiversity of species that may contain indole diterpenes, we analyzed several Convolvulaceous species (n=30) for indole diterpene alkaloids, representing four genera, Argyreia, Ipomoea, Stictocardia, and Turbina, that had been previously reported to contain ergot alkaloids. These species were also verified to contain ergot alkaloids and subsequently analyzed for swainsonine. Ergot alkaloids were detected in 18 species representing all four genera screened, indole diterpenes were detected in two Argyreia species and eight Ipomoea species of the 18 that contained ergot alkaloids, and swainsonine was detected in two Ipomoea species. The data suggest a strong association exists between the relationship of the Periglandula species associated with each host and the occurrence of the ergot alkaloids and/or the indole diterpenes reported here. Likewise there appears to be an association between the occurrence of the respective bioactive principle and the genetic relatedness of the respective host plant species.

10.
Ecology ; 99(12): 2703-2711, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30367461

RESUMO

Experimental tests of community assembly mechanisms for host-associated microbiomes in nature are lacking. Asymptomatic foliar fungal endophytes are a major component of the plant microbiome and are increasingly recognized for their impacts on plant performance, including pathogen defense, hormonal manipulation, and drought tolerance. However, it remains unclear whether fungal endophytes preferentially colonize certain host ecotypes or genotypes, reflecting some degree of biotic adaptation in the symbioses, or whether colonization is simply a function of spore type and abundance within the local environment. Whether host ecotype, local environment, or some combination of both controls the pattern of microbiome formation across hosts represents a new dimension to the age-old debate of nature versus nurture. Here, we used a reciprocal transplant design to explore the extent of host specificity and biotic adaptation in the plant microbiome, as evidenced by differential colonization of host genetic types by endophytes. Specifically, replicate plants from three locally-adapted ecotypes of the native grass Panicum virgatum (switchgrass) were transplanted at three geographically distinct field sites (one home and two away) in the Midwestern US. At the end of the growing season, plant leaves were harvested and the fungal microbiome characterized using culture-dependent sequencing techniques. Our results demonstrated that fungal endophyte community structure was determined by local environment (i.e., site), but not by host ecotype. Fungal richness and diversity also strongly differed by site, with lower fungal diversity at a riparian field site, whereas host ecotype had no effect. By contrast, there were significant differences in plant phenotypes across all ecotypes and sites, indicating ecotypic differentiation of host phenotype. Overall, our results indicate that environmental factors are the primary drivers of community structure in the switchgrass fungal microbiome.


Assuntos
Micobioma , Panicum , Ecótipo , Endófitos , Genótipo
11.
Glob Chang Biol ; 24(8): 3317-3330, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29573504

RESUMO

Forest soils store large amounts of carbon (C) and nitrogen (N), yet how predicted shifts in forest composition will impact long-term C and N persistence remains poorly understood. A recent hypothesis predicts that soils under trees associated with arbuscular mycorrhizas (AM) store less C than soils dominated by trees associated with ectomycorrhizas (ECM), due to slower decomposition in ECM-dominated forests. However, an incipient hypothesis predicts that systems with rapid decomposition-e.g. most AM-dominated forests-enhance soil organic matter (SOM) stabilization by accelerating the production of microbial residues. To address these contrasting predictions, we quantified soil C and N to 1 m depth across gradients of ECM-dominance in three temperate forests. By focusing on sites where AM- and ECM-plants co-occur, our analysis controls for climatic factors that covary with mycorrhizal dominance across broad scales. We found that while ECM stands contain more SOM in topsoil, AM stands contain more SOM when subsoil to 1 m depth is included. Biomarkers and soil fractionations reveal that these patterns are driven by an accumulation of microbial residues in AM-dominated soils. Collectively, our results support emerging theory on SOM formation, demonstrate the importance of subsurface soils in mediating plant effects on soil C and N, and indicate that shifts in the mycorrhizal composition of temperate forests may alter the stabilization of SOM.


Assuntos
Carbono/análise , Micorrizas/metabolismo , Nitrogênio/análise , Solo/química , Árvores/microbiologia , Sequestro de Carbono , Indiana , Maryland , Virginia
12.
Oecologia ; 186(1): 195-204, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29086005

RESUMO

Plant-soil feedbacks are known to play a central role in species co-existence, but conceptual frameworks for predicting their magnitude and direction are lacking. We ask whether co-occurring trees that associate with different types of mycorrhizal fungi, which are hypothesized to differ in terms of nutrient use and plant-soil feedbacks, differ in sapling establishment densities and probability of co-occurrence. Given that ectomycorrhizal (ECM) trees typically have fungal structures that protect roots from pathogens whereas arbuscular mycorrhizal (AM) trees do not, we hypothesized that ECM saplings would be clustered around ECM trees, while AM saplings would be suppressed near AM trees. Most previous studies have focused on seedlings, but here we examine whether the spatial signal is evident in later life stages. We measured the spatial associations of ~ 28,000 trees using point pattern analysis in a 25-ha old-growth forest where ECM trees comprised 72% of total basal area and 42% of the total stems, while AM trees comprised the remainder. Supporting our hypothesis, AM saplings were more inhibited by AM trees, while ECM saplings were more clustered around ECM trees. The spatial patterns of AM and ECM trees on saplings of the alternate mycorrhizal type were inhibited. To the extent that similar types of feedbacks occur for other AM and ECM trees, our results suggest that fundamental differences in the nature of local-scale biotic interactions between trees and their fungal symbionts may influence forest community assembly and ecosystem dynamics.


Assuntos
Micorrizas , Ecossistema , Florestas , Raízes de Plantas , Solo , Microbiologia do Solo
13.
Ecol Lett ; 20(8): 1064-1073, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28677329

RESUMO

Over the past 25 years, the plant-soil feedback (PSF) framework has catalyzed our understanding of how belowground microbiota impact plant fitness and species coexistence. Here, we apply a novel extension of this framework to microbiota associated with aboveground tissues, termed 'plant-phyllosphere feedback (PPFs)'. In parallel greenhouse experiments, rhizosphere and phyllosphere microbiota of con- and heterospecific hosts from four species were independently manipulated. In a third experiment, we tested the combined effects of soil and phyllosphere feedback under field conditions. We found that three of four species experienced weak negative PSF whereas, in contrast, all four species experienced strong negative PPFs. Field-based feedback estimates were highly negative for all four species, though variable in magnitude. Our results suggest that phyllosphere microbiota, like rhizosphere microbiota, can potentially mediate plant species coexistence via negative feedbacks. Extension of the PSF framework to the phyllosphere is needed to more fully elucidate plant-microbiota interactions.


Assuntos
Asteraceae , Microbiologia do Solo , Retroalimentação , Rizosfera , Solo
14.
Proc Biol Sci ; 284(1858)2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28679727

RESUMO

It is increasingly recognized that microbiota affect host health and physiology. However, it is unclear what factors shape microbiome community assembly in nature, and how microbiome assembly can be manipulated to improve host health. All plant leaves host foliar endophytic fungi, which make up a diverse, environmentally acquired fungal microbiota. Here, we experimentally manipulated assembly of the cacao tree (Theobroma cacao) fungal microbiome in nature and tested the effect of assembly outcome on host health. Using next-generation sequencing, as well as culture-based methods coupled with Sanger sequencing, we found that manipulating leaf litter exposure and location within the forest canopy significantly altered microbiome composition in cacao. Exposing cacao seedlings to leaf litter from healthy conspecific adults enriched the seedling microbiome with Colletotrichum tropicale, a fungal endophyte known to enhance pathogen resistance of cacao seedlings by upregulating host defensive pathways. As a result, seedlings exposed to healthy conspecific litter experienced reduced pathogen damage. Our results link processes that affect the assembly and composition of microbiome communities to their functional consequences for host success, and have broad implications for understanding plant-microbe interactions. Deliberate manipulation of the plant-fungal microbiome also has potentially important applications for cacao production and other agricultural systems in general.


Assuntos
Cacau/microbiologia , Fungos , Microbiota , Folhas de Planta/microbiologia , Plântula/microbiologia
15.
Oecologia ; 184(4): 859-871, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28721523

RESUMO

Elucidating the factors determining reproductive success has challenged scientists since Darwin, but the exact pathways that shape the evolution of life history traits by connecting extrinsic (e.g., landscape structure) and intrinsic (e.g., female's age and endosymbionts) factors and reproductive success have rarely been studied. Here we collected female fleas from wild rodents in plots differing in their densities and proportions of the most dominant rodent species. We then combined path analysis and model selection approaches to explore the network of effects, ranging from micro to macroscales, determining the reproductive success of these fleas. Our results suggest that female reproductive success is directly and positively associated with their infection by Mycoplasma bacteria and their own body mass, and with the rodent species size and total density. In addition, we found evidence for indirect effects of rodent sex and rodent community diversity on female reproductive success. These results highlight the importance of exploring interrelated factors across organization scales while studying the reproductive success of wild organisms, and they have implications for the control of vector-borne diseases.


Assuntos
Vetores Artrópodes , Infestações por Pulgas , Reprodução , Animais , Feminino , Roedores , Seleção Genética , Sifonápteros , Simbiose
16.
Ecol Lett ; 19(4): 469-77, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26931647

RESUMO

Emerging pathogens are a growing threat to human health, agriculture and the diversity of ecological communities but may also help control problematic species. Here we investigated the diversity, distribution and consequences of emerging fungal pathogens infecting an aggressive invasive grass that is rapidly colonising habitats throughout the eastern USA. We document the recent emergence and accumulation over time of diverse pathogens that are members of a single fungal genus and represent multiple, recently described or undescribed species. We also show that experimental suppression of these pathogens increased host performance in the field, demonstrating the negative effects of emerging pathogens on invasive plants. Our results suggest that invasive species can facilitate pathogen emergence and amplification, raising concerns about movement of pathogens among agricultural, horticultural, and wild grasses. However, one possible benefit of pathogen accumulation is suppression of aggressive invaders over the long term, potentially abating their negative impacts on native communities.


Assuntos
Fungos/fisiologia , Espécies Introduzidas , Poaceae/microbiologia , Poaceae/fisiologia , Ecossistema , Controle Biológico de Vetores
17.
Microb Ecol ; 72(3): 621-32, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27341838

RESUMO

All plants form symbioses with endophytic fungi, which affect host plant health and function. Most endophytic fungi are horizontally transmitted, and consequently, local environment and geographic location greatly influence endophyte community composition. Growing evidence also suggests that identity of the plant host (e.g., species, genotype) can be important in shaping endophyte communities. However, little is known about how disturbances to plants affect their fungal symbiont communities. The goal of this study was to test if disturbances, from both natural and anthropogenic sources, can alter endophyte communities independent of geographic location or plant host identity. Using the plant species white snakeroot (Ageratina altissima; Asteraceae), we conducted two experiments that tested the effect of perturbation on endophyte communities. First, we examined endophyte response to leaf mining insect activity, a natural perturbation, in three replicate populations. Second, for one population, we applied fungicide to plant leaves to test endophyte community response to an anthropogenic perturbation. Using culture-based methods and Sanger sequencing of fungal isolates, we then examined abundance, diversity, and community structure of endophytic fungi in leaves subjected to perturbations by leaf mining and fungicide application. Our results show that plant host individual and geographic location are the major determinants of endophyte community composition even in the face of perturbations. Unexpectedly, we found that leaf mining did not impact endophyte communities in white snakeroot, but fungicide treatment resulted in small but significant changes in endophyte community structure. Together, our results suggest that endophyte communities are highly resistant to biotic and anthropogenic disturbances.


Assuntos
Endófitos , Face/microbiologia , Fungos/classificação , Herbivoria , Plantas/classificação , Plantas/microbiologia , Simbiose , Animais , Biodiversidade , Endófitos/classificação , Endófitos/efeitos dos fármacos , Endófitos/isolamento & purificação , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Indiana , Insetos/microbiologia , Microbiota/fisiologia , Mineração , Praguicidas , Filogenia , Folhas de Planta/microbiologia , Microbiologia do Solo , Especificidade da Espécie
18.
Mol Ecol ; 24(10): 2566-79, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25847197

RESUMO

High-throughput sequencing is revealing that most macro-organisms house diverse microbial communities. Of particular interest are disease vectors whose microbiome could potentially affect pathogen transmission and vector competence. We investigated bacterial community composition and diversity of the ticks Dermacentor variabilis (n = 68) and Ixodes scapularis (n = 15) and blood of their shared rodent host, Peromyscus leucopus (n = 45) to quantify bacterial diversity and concordance. The 16S rRNA gene was amplified from genomic DNA from field-collected tick and rodent blood samples, and 454 pyrosequencing was used to elucidate their bacterial communities. After quality control, over 300 000 sequences were obtained and classified into 118 operational taxonomic units (OTUs, clustered at 97% similarity). Analysis of rarefied communities revealed that the most abundant OTUs were tick species-specific endosymbionts, Francisella and Rickettsia, and the commonly flea-associated bacterium Bartonella in rodent blood. An Arsenophonus and additional Francisella endosymbiont were also present in D. variabilis samples. Rickettsia was found in both tick species but not in rodent blood, suggesting that it is not transmitted during feeding. Bartonella was present in larvae and nymphs of both tick species, even those scored as unengorged. Relatively, few OTUs (e.g. Bartonella, Lactobacillus) were found in all sample types. Overall, bacterial communities from each sample type were significantly different and highly structured, independent of their dominant OTUs. Our results point to complex microbial assemblages inhabiting ticks and host blood including infectious agents, tick-specific endosymbionts and environmental bacteria that could potentially affect arthropod-vectored disease dynamics.


Assuntos
Bactérias/classificação , Dermacentor/microbiologia , Ixodes/microbiologia , Microbiota , Peromyscus/microbiologia , Animais , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Indiana , Larva , Ninfa , Peromyscus/sangue , Peromyscus/parasitologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
19.
Glob Chang Biol ; 21(2): 528-49, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25258024

RESUMO

Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥ 1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 °S-61 °N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ± 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m(-2) yr(-1) and 3.1 g S m(-2) yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Monitoramento Ambiental , Florestas
20.
Mycologia ; 107(4): 667-78, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977213

RESUMO

Periglandula ipomoeae and P. turbinae (Ascomycota, Clavicipitaceae) are recently described fungi that form symbiotic associations with the morning glories (Convolvulaceae) Ipomoea asarifolia and Turbina corymbosa, respectively. These Periglandula species are vertically transmitted and produce bioactive ergot alkaloids in seeds of infected plants and ephemeral mycelia on the adaxial surface of young leaves. Whether other morning glories that contain ergot alkaloids also are infected by Periglandula fungi is a central question. Here we report on a survey of eight species of Convolvulaceae (Argyreia nervosa, I. amnicola, I. argillicola, I. gracilis, I. hildebrandtii, I. leptophylla, I. muelleri, I. pes-caprae) for ergot alkaloids in seeds and associated clavicipitaceous fungi potentially responsible for their production. All host species contained ergot alkaloids in four distinct chemotypes with concentrations of 15.8-3223.0 µg/g. Each chemotype was a combination of four or five ergot alkaloids out of seven alkaloids detected across all hosts. In addition, each host species exhibited characteristic epiphytic mycelia on adaxial surfaces of young leaves with considerable interspecific differences in mycelial density. We sequenced three loci from fungi infecting each host: the nuclear rDNA internal transcribed spacer region (ITS), introns of the translation factor 1-α gene (tefA) and the dimethylallyl-tryptophan synthase gene (dmaW), which codes for the enzyme that catalyzes the first step in ergot alkaloid biosynthesis. Phylogenetic analyses confirmed that these fungi are in the family Clavicipitaceae and form a monophyletic group with the two described Periglandula species. This study is the first to report Periglandula spp. from Asian, Australian, African and North American species of Convolvulaceae, including host species with a shrub growth form and host species occurring outside of the tropics. This study demonstrates that ergot alkaloids in morning glories always co-occur with Periglandula spp. and that closely related Periglandula spp. produce alkaloid chemotypes more similar than more distantly related species.


Assuntos
Convolvulaceae/microbiologia , Hypocreales/química , Hypocreales/genética , Filogenia , Convolvulaceae/classificação , Alcaloides de Claviceps/química , Alcaloides de Claviceps/metabolismo , Hypocreales/classificação , Hypocreales/fisiologia , Dados de Sequência Molecular , Folhas de Planta/microbiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa