Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Ann Bot ; 124(4): 591-604, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30596965

RESUMO

BACKGROUND AND AIMS: Germplasm with diverse, agronomically relevant traits forms the foundation of a successful plant breeding programme. Since 1993, the United Nations has been advocating the implementation of the Convention on Biological Diversity (CBD) and the subsequent 2002 Bonn Guidelines as international best practice on germplasm collection and use. In 2006, a European team made an expedition to Asia to collect wild germplasm of Miscanthus, a C4 perennial rhizomatous grass, for breeding an environmentally adaptable, resilient and high-yielding bioenergy crop. We outline general aspects of germplasm collection, conservation, breeding and biomass production evaluation while following the CBD's guidelines, respecting biodiversity and conservation needs, and the ethical use of genetic resources. METHODS: Effective protocols, quarantine, methods for collecting seed and rhizomes, and a genebank for conservation were established. Versatile informatics and database architecture were used to assist in selection, flowering synchronization, crossing, evaluation, phenotyping and data integration. Approaches were formulated to comply with the CBD guidelines. KEY RESULTS: A total of 303 accessions of M. sinensis, M. sacchariflorus and M. floridulus were collected from 158 geographically and environmentally diverse locations. These species were shown to accumulate different amounts of aerial biomass due to combinations of stem count, height and thickness. Progeny from one interspecies cross accumulated more biomass in early trials and has shown double the yield performance in years 3-4 compared with the existing commercial cultivar M. × giganteus. An example of an F1 hybrid has already demonstrated the long-term potential of exploiting this collection for a breeding programme. CONCLUSIONS: By conforming to the CBD principles, the authors' international collaboration provides a practical example of implementing the CBD. The collection widened the genetic diversity of Miscanthus available to allow for breeding of novel hybrids that exhibit more diverse traits to increase yield and resilience for growth on marginal land and in climate-challenged environments.


Assuntos
Biodiversidade , Poaceae , Ásia , Europa (Continente) , Nações Unidas
2.
J Exp Bot ; 68(18): 5093-5102, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29040628

RESUMO

Miscanthus has potential as a bioenergy crop but the rapid development of high-yielding varieties is challenging. Previous studies have suggested that phenology and canopy height are important determinants of biomass yield. Furthermore, while genome-wide prediction was effective for a broad range of traits, the predictive ability for yield was very low. We therefore developed models clarifying the genetic associations between spring emergence, consequent canopy phenology and dry biomass yield. The timing of emergence was a moderately strong predictor of early-season elongation growth (genetic correlation >0.5), but less so for growth later in the season and for the final yield (genetic correlation <0.1). In contrast, early-season canopy height was consistently more informative than emergence for predicting biomass yield across datasets for two species in Miscanthus and two growing seasons. We used the associations uncovered through these models to develop selection indices that are expected to increase the response to selection for yield by as much as 21% and improve the performance of genome-wide prediction by an order of magnitude. This multivariate approach could have an immediate impact in operational breeding programmes, as well as enable the integration of crop growth models and genome-wide prediction.


Assuntos
Genoma de Planta/genética , Genômica , Modelos Estatísticos , Poaceae/genética , Agricultura , Biocombustíveis , Biomassa , Cruzamento , Genótipo , Fenótipo , Poaceae/crescimento & desenvolvimento , Estações do Ano
3.
New Phytol ; 201(4): 1227-1239, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24308815

RESUMO

• Increasing demands for food and energy require a step change in the effectiveness, speed and flexibility of crop breeding. Therefore, the aim of this study was to assess the potential of genome-wide association studies (GWASs) and genomic selection (i.e. phenotype prediction from a genome-wide set of markers) to guide fundamental plant science and to accelerate breeding in the energy grass Miscanthus. • We generated over 100,000 single-nucleotide variants (SNVs) by sequencing restriction site-associated DNA (RAD) tags in 138 Micanthus sinensis genotypes, and related SNVs to phenotypic data for 17 traits measured in a field trial. • Confounding by population structure and relatedness was severe in naïve GWAS analyses, but mixed-linear models robustly controlled for these effects and allowed us to detect multiple associations that reached genome-wide significance. Genome-wide prediction accuracies tended to be moderate to high (average of 0.57), but varied dramatically across traits. As expected, predictive abilities increased linearly with the size of the mapping population, but reached a plateau when the number of markers used for prediction exceeded 10,000-20,000, and tended to decline, but remain significant, when cross-validations were performed across subpopulations. • Our results suggest that the immediate implementation of genomic selection in Miscanthus breeding programs may be feasible.


Assuntos
Biomassa , Parede Celular/metabolismo , Estudo de Associação Genômica Ampla , Poaceae/citologia , Poaceae/genética , Característica Quantitativa Herdável , DNA de Plantas/genética , Marcadores Genéticos , Genoma de Planta/genética , Genótipo , Geografia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Dinâmica Populacional , Análise de Componente Principal , Mapeamento por Restrição , Análise de Sequência de DNA
4.
Heliyon ; 10(6): e27788, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515730

RESUMO

There are few studies related to the radionuclide remediation options, which comply to the demands of the environmentally non-destructive physical remediation methods. So far, most of the research was conducted on the phytoremediation capacity of different energy crops, as well as the established miscanthus hybrids which involved metal and heavy metal contaminants. Hence, the objective of this research was the radioecological characterization of the examined agroecosystem, including the initial source of the radionuclides (soil) as well as different miscanthus hybrids grown on the same soil. The results have shown that the radioactive content of soil was similar to the global averages. All measurements of the activity concentration of 137Cs in miscanthus samples were below the detection limits. There is also an indication that 210Pb is leaching into the lower layers (or is being taken up by miscanthus plant from the upper layers). Moreover, transfer factors (TFs) for radionuclides, as a more precise parameter for evaluating the phytoremediation potential, were calculated; the TFs were found to be very low for 226Ra (≤0.07), TFs for 40K (≤0.39) and for 232Th (≤0.21) were in the lower limits, whereas the TFs for 238U were found to be the highest (≤0.92). For 210Pb, the TFs were not calculated, since the expectation was that a significant part of the measured quantity came from the air, and not through the soil. Having in mind the sustainability and the circularity aspect of the radionuclide phytoremediation system, the appropriate management method should be applied for the disposal and utilization of the biomass contaminated with radionuclides. This research has shown that the radiological content in miscanthus is high enough and the ash content is low enough that miscanthus ash could be considered as a NORM (Naturally Occurring Radioactive Material), and it can be further used for the construction industry (i.e. concrete, tiles), in mixtures with other materials with certain limitations, similar to the utilization of ash from other sources such as coal or wood.

5.
J Exp Bot ; 64(2): 541-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23183254

RESUMO

Miscanthus sacchariflorus is a fast-growing C(4) perennial grass that can naturally hybridize with M. sinensis to produce interspecific hybrids, such as the sterile triploid M.× giganteus. The creation of such hybrids is essential for the rapid domestication of this novel bioenergy crop. However, progress has been hindered by poor understanding of the environmental cues promoting floral transition in M. sacchariflorus, which flowers less readily than M. sinensis. The purpose of this work was to identify the flowering requirements of M. sacchariflorus genotypes in order to expedite the introduction of new germplasm optimized to different environments. Six M. sacchariflorus accessions collected from a range of latitudes were grown under controlled photoperiod and temperature conditions, and flowering, biomass, and morphological phenotypic data were captured. Results indicated that M. sacchariflorus, irrespective of origin, is a quantitative short-day plant. Flowering under static long days (15.3h daylength), compared with shorter photoperiods, was delayed by an average 61 d, with an average associated increase of 52% of above-ground biomass (DM plant(-1)). Timing of floral initiation occurred between photoperiods of 14.2h and 12.1h, and accumulated temperatures of 553-1157 °C above a base temperature of 10 °C. Miscanthus sacchariflorus flowering phenology closely resembles that of Sorghum and Saccharum, indicating potentially similar floral pathways and suggesting that determination of the underlying genetic mechanisms will be facilitated by the syntenic relationships existing between these important C(4) grasses.


Assuntos
Flores/crescimento & desenvolvimento , Poaceae/genética , Biocombustíveis , Biomassa , Flores/genética , Flores/efeitos da radiação , Luz , Fotoperíodo , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação , Temperatura
6.
J Exp Bot ; 64(8): 2373-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23599277

RESUMO

Energy crops can provide a sustainable source of power and fuels, and mitigate the negative effects of CO2 emissions associated with fossil fuel use. Miscanthus is a perennial C4 energy crop capable of producing large biomass yields whilst requiring low levels of input. Miscanthus is largely unimproved and therefore there could be significant opportunities to increase yield. Further increases in yield will improve the economics, energy balance, and carbon mitigation of the crop, as well as reducing land-take. One strategy to increase yield in Miscanthus is to maximize the light captured through an extension of canopy duration. In this study, canopy duration was compared among a diverse collection of 244 Miscanthus genotypes. Canopy duration was determined by calculating the number of days between canopy establishment and senescence. Yield was positively correlated with canopy duration. Earlier establishment and later senescence were also both separately correlated with higher yield. However, although genotypes with short canopy durations were low yielding, not all genotypes with long canopy durations were high yielding. Differences of yield between genotypes with long canopy durations were associated with variation in stem and leaf traits. Different methodologies to assess canopy duration traits were investigated, including visual assessment, image analysis, light interception, and different trait thresholds. The highest correlation coefficients were associated with later assessments of traits and the use of quantum sensors for canopy establishment. A model for trait optimization to enable yield improvement in Miscanthus and other bioenergy crops is discussed.


Assuntos
Biocombustíveis , Poaceae/crescimento & desenvolvimento , Agricultura , Biomassa , Genótipo , Fenótipo , Poaceae/genética , Análise de Componente Principal , Característica Quantitativa Herdável , Fatores de Tempo
7.
J Exp Bot ; 64(14): 4143-55, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24064927

RESUMO

To accelerate domestication of Miscanthus, an important energy crop, 244 replicated genotypes, including two different species and their hybrids, were analysed for morphological traits and biomass yield over three growing seasons following an establishment phase of 2 years in the largest Miscanthus diversity trial described to date. Stem and leaf traits were selected that contributed both directly and indirectly to total harvested biomass yield, and there was variation in all traits measured. Morphological diversity within the population was correlated with dry matter yield (DMY) both as individual traits and in combination, in order to determine the respective contributions of the traits to biomass accumulation and to identify breeding targets for yield improvement. Predictive morphometric analysis was possible at year 3 within Miscanthus sinensis genotypes but not between M. sinensis, Miscanthus sacchariflorus, and interspecific hybrids. Yield is a complex trait, and no single simple trait explained more than 33% of DMY, which varied from 1 to 5297 g among genotypes within this trial. Associating simple traits increased the power of the morphological data to predict yield to 60%. Trait variety, in combination, enabled multiple ideotypes, thereby increasing the potential diversity of the crop for multiple growth locations and end uses. Both triploids and interspecific hybrids produced the highest mature yields, indicating that there is significant heterosis to be exploited within Miscanthus that might be overlooked in early selection screens within years 1-3. The potential for optimizing biomass yield by selecting on the basis of morphology is discussed.


Assuntos
Biocombustíveis , Conservação dos Recursos Naturais , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/crescimento & desenvolvimento , Modelos Biológicos , Biodiversidade , Biomassa , Produtos Agrícolas/genética , Genótipo , Modelos Lineares , Folhas de Planta/anatomia & histologia , Ploidias , Característica Quantitativa Herdável , Especificidade da Espécie
8.
Ann Bot ; 111(5): 999-1013, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23519835

RESUMO

BACKGROUND AND AIMS: The bioenergy grass Miscanthus is native to eastern Asia. As Miscanthus uses C4 photosynthesis, the cooler temperatures experienced in much of northern Europe are expected to limit productivity. Identification of genetic diversity in chilling tolerance will enable breeders to generate more productive varieties for these cooler regions. Characterizing the temporal relationships between photosynthesis, carbohydrate and molecular expression of relevant genes is key to understanding genotypic differences in tolerance or sensitivity. METHODS: To characterize chilling responses in four Miscanthus genotypes, plants were exposed to a sudden reduction in temperature. The genotypes studied comprised of two M. sinensis, one M. sacchariflorus and one inter-species hybrid, M. × giganteus. Changes in photosynthesis (Asat), carbohydrate composition and the expression of target transcripts were observed following chilling-shock. After 4 d the decline in leaf elongation rate (LER) in the different genotypes was measured. RESULTS: Following chilling-shock the greatest decline in Asat was observed in M. sacchariflorus and one M. sinensis genotype. Carbohydrate concentrations increased in all genotypes following chilling but to a lesser extent in M. sacchariflorus. Two stress inducible genes were most highly expressed in the genotypes that experienced the greatest declines in Asat and LER. Miscanthus × giganteus retained the highest Asat and was unique in exhibiting no decline in LER following transfer to 12 °C. CONCLUSIONS: Miscanthus × giganteus exhibits a superior tolerance to chilling shock than other genotypes of Miscanthus. The absence of sucrose accumulation in M. sacchariflorus during chilling-shock suggests an impairment in enzyme function. A candidate transcription factor, MsCBF3, is most highly expressed in the most sensitive genotypes and may be a suitable molecular marker for predicting chilling sensitivity.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Cruzamentos Genéticos , Poaceae/genética , Poaceae/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/efeitos da radiação , Metabolismo dos Carboidratos/efeitos da radiação , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genótipo , Luz , Fenótipo , Fotossíntese/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Poaceae/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade , Amido/metabolismo
9.
Front Plant Sci ; 14: 1095838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324693

RESUMO

Biomass crops provide significant potential to substitute for fossil fuels and mitigate against climate change. It is widely acknowledged that significant scale up of biomass crops is required to help reach net zero targets. Miscanthus is a leading biomass crop embodying many characteristics that make it a highly sustainable source of biomass but planted area remains low. Miscanthus is commonly propagated via rhizome, but efficient alternatives may increase uptake and help diversify the cultivated crop. Using seed-propagate plug plants of Miscanthus has several potential benefits such as improving propagation rates and scale up of plantations. Plugs also provide an opportunity to vary the time and conditions under protected growth, to achieve optimal plantlets before planting. We varied combinations of glasshouse growth period and field planting dates under UK temperate conditions, which demonstrated the special importance of planting date on yield, stem number and establishment rates of Miscanthus. We also propagated Miscanthus in four different commercial plug designs that contained different volumes of substrate, the resulting seedlings were planted at three different dates into field trials. In the glasshouse, plug design had significant effects on above and belowground biomass accumulation and at a later time point belowground growth was restricted in some plug designs. After subsequent growth in the field, plug design and planting date had a significant effect on yield. The effects of plug design on yield were no longer significant after a second growth season but planting date continued to have a significant effect. After the second growth year, it was found that planting date had a significant effect on surviving plants, with the mid-season planting producing higher survival rates over all plug types.Establishment was positively correlated with DM biomass produced in the first growth season. Sowing date had a significant effect on establishment but the impacts of plug design were more nuanced and were significant at later planting dates. We discuss the potential to use the flexibility afforded by seed propagation of plug plants to deliver significant impacts in achieving high yield and establishment of biomass crops during the critical first two years of growth.

10.
Front Plant Sci ; 14: 1155188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346113

RESUMO

Miscanthus is a promising crop for bioenergy and biorefining in Europe. The improvement of Miscanthus as a crop relies on the creation of new varieties through the hybridization of germplasm collected in the wild with genetic variation and suitable characteristics in terms of resilience, yield and quality of the biomass. Local adaptation has likely shaped genetic variation for these characteristics and is therefore important to quantify. A key biomass quality parameter for biorefining is the ease of conversion of cell wall polysaccharides to monomeric sugars. Thus far, the variability of cell wall related traits in Miscanthus has mostly been explored in accessions from limited genetic backgrounds. Here we analysed the soil and climatic conditions of the original collection sites of 592 Miscanthus genotypes, which form eight distinct genetic groups based on discriminant analysis of principal components of 25,014 single-nucleotide polymorphisms. Our results show that species of the genus Miscanthus grow naturally across a range of soil and climate conditions. Based on a detailed analysis of 49 representative genotypes, we report generally minor differences in cell wall characteristics between different genetic groups and high levels of genetic variation within groups, with less investigated species like M. floridulus showing lower recalcitrance compared to the other genetic groups. The results emphasize that both inter- and intra- specific variation in cell wall characteristics and biomass recalcitrance can be used effectively in Miscanthus breeding programmes, while also reinforcing the importance of considering biomass yield when quantifying overall conversion efficiency. Thus, in addition to reflecting the complexity of the interactions between compositional and structural cell wall features and cell wall recalcitrance to sugar release, our results point to traits that could potentially require attention in breeding programmes targeted at improving the Miscanthus biomass crop.

11.
Biology (Basel) ; 12(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132351

RESUMO

High-yield potential perennial crops, such as Miscanthus spp. and Arundo donax are amongst the most promising sources of sustainable biomass for bioproducts and bioenergy. Although several studies assessed the agronomic performance of these species on diverse marginal lands, research to date on drought and zinc (Zn) resistance is scarce. Thus, the objective of this study was to investigate the drought and Zn stress tolerance of seven novel Miscanthus hybrids and seven Arundo clones originating from different parts of Italy. We subjected both species to severe drought (less than 30%), and Zn stress (400 mg/kg-1 of ZnSO4) separately, after one month of growth. All plants were harvested after 28 days of stress, and the relative drought and Zn stress tolerance were determined by using a set of morpho-physio-biochemical and biomass attributes in relation to stress tolerance indices (STI). Principal component analysis (PCA), hierarchical clustering analysis (HCA) and stress tolerance indices (STI) were performed for each morpho-physio-biochemical and biomass parameters and showed significant relative differences among the seven genotypes of both crops. Heatmaps of these indices showed how the different genotypes clustered into four groups. Considering PCA ranking value, Miscanthus hybrid GRC10 (8.11) and Arundo clone PC1 (11.34) had the highest-ranking value under both stresses indicating these hybrids and clones are the most tolerant to drought and Zn stress. In contrast, hybrid GRC3 (-3.33 lowest ranking value) and clone CT2 (-5.84) were found to be the most sensitive to both drought and Zn stress.

12.
Biotechnol Biofuels Bioprod ; 16(1): 29, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814294

RESUMO

BACKGROUND: Perennial C4 grasses from the genus Miscanthus are widely regarded as leading and promising dedicated bioenergy crops due to their high biomass accumulation on marginal land with low environmental impacts and maintenance requirements over its productive life. There is an urgent socio-political and environmental need to ramp up the production of alternative, affordable and green bioenergy sources and to re-direct the net zero carbon emissions trajectory. Hence, up-scaling of Miscanthus cultivation as a source of biomass for renewable energy could play an important role to strategically address sustainable development goals for a growing bio-based economy. Certain Miscanthus sinensis genotypes are particularly interesting for their biomass productivity across a wide range of locations. As the aromatic biomass component lignin exhibits a higher energy density than cell wall polysaccharides and is generally used as an indicator for heating or calorific value, genetic engineering could be a feasible strategy to develop M. sinensis biomass with increased lignin content and thus improving the energetic value of the biomass. RESULTS: For this purpose, transgenic M. sinensis were generated by Agrobacterium-mediated transformation for expression of ZmMYB167, a MYB transcription factor known for regulating lignin biosynthesis in C3 and C4 grasses. Four independent transgenic ZmMYB167 Miscanthus lines were obtained. Agronomic traits such as plant height, tillering and above-ground dry weight biomass of the transgenic plants were not different to that of wild-type control plants. Total lignin content of the transgenic plants was ~ 15-24% higher compared with control plants. However, the structural carbohydrates, glucan and xylan, were decreased by ~ 2-7% and ~ 8-10%, respectively, in the transgenic plants. Moreover, expression of ZmMYB167 in transgenic plants did not alter lignin composition, phenolic compounds or enzymatic saccharification efficiency yields but importantly improved total energy levels in Miscanthus biomass, equivalent to 10% higher energy yield per hectare. CONCLUSIONS: This study highlights ZmMYB167 as a suitable target for genetic lignin bioengineering interventions aimed at advancing and developing lignocellulosic biomass supply chains for sustainable production of renewable bioenergy.

13.
Glob Change Biol Bioenergy ; 15(4): 444-461, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38505760

RESUMO

New biomass crop hybrids for bioeconomic expansion require yield projections to determine their potential for strategic land use planning in the face of global challenges. Our biomass growth simulation incorporates radiation interception and conversion efficiency. Models often use leaf area to predict interception which is demanding to determine accurately, so instead we use low-cost rapid light interception measurements using a simple laboratory-made line ceptometer and relate the dynamics of canopy closure to thermal time, and to measurements of biomass. We apply the model to project the European biomass potentials of new market-ready hybrids for 2020-2030. Field measurements are easier to collect, the calibration is seasonally dynamic and reduces influence of weather variation between field sites. The model obtained is conservative, being calibrated by crops of varying establishment and varying maturity on less productive (marginal) land. This results in conservative projections of miscanthus hybrids for 2020-2030 based on 10% land use conversion of the least (productive) grassland and arable for farm diversification, which show a European potential of 80.7-89.7 Mt year-1 biomass, with potential for 1.2-1.3 EJ year-1 energy and 36.3-40.3 Mt year-1 carbon capture, with seeded Miscanthus sacchariflorus × sinensis displaying highest yield potential. Simulated biomass projections must be viewed in light of the field measurements on less productive land with high soil water deficits. We are attempting to model the results from an ambitious and novel project combining new hybrids across Europe with agronomy which has not been perfected on less productive sites. Nevertheless, at the time of energy sourcing issues, seed-propagated miscanthus hybrids for the upscaled provision of bioenergy offer an alternative source of renewable energy. If European countries provide incentives for growers to invest, seeded hybrids can improve product availability and biomass yields over the current commercial miscanthus variety.

14.
Glob Change Biol Bioenergy ; 15(5): 538-558, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38505831

RESUMO

Demand for sustainably produced biomass is expected to increase with the need to provide renewable commodities, improve resource security and reduce greenhouse gas emissions in line with COP26 commitments. Studies have demonstrated additional environmental benefits of using perennial biomass crops (PBCs), when produced appropriately, as a feedstock for the growing bioeconomy, including utilisation for bioenergy (with or without carbon capture and storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) (2023-27) objectives provided they are carefully integrated into farming systems and landscapes. Despite significant research and development (R&D) investment over decades in herbaceous and coppiced woody PBCs, deployment has largely stagnated due to social, economic and policy uncertainties. This paper identifies the challenges in creating policies that are acceptable to all actors. Development will need to be informed by measurement, reporting and verification (MRV) of greenhouse gas emissions reductions and other environmental, economic and social metrics. It discusses interlinked issues that must be considered in the expansion of PBC production: (i) available land; (ii) yield potential; (iii) integration into farming systems; (iv) R&D requirements; (v) utilisation options; and (vi) market systems and the socio-economic environment. It makes policy recommendations that would enable greater PBC deployment: (1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; (2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low-carbon bioenergy and bioproducts; (3) support innovation in biomass utilisation value chains; and (4) continue long-term, strategic R&D and education for positive environmental, economic and social sustainability impacts.

15.
Glob Change Biol Bioenergy ; 14(11): 1205-1218, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36632359

RESUMO

To achieve net zero greenhouse gas emission by 2050 as set out by the 2019 amendment to the 2008 UK Climate Change Act, a major shift towards renewable energy is needed. This includes the development of new methods along with improving and upscaling existing technologies. One example of new methods in bioenergy is developing new Miscanthus cultivars for electricity generation via thermal power station furnaces. Miscanthus is still relatively new compared with other agriculture practices, so market assessments and improvements are needed to reduce the barriers to entry for prospective growers. This publication provides a profile of UK Miscanthus growers and their businesses, their experiences of benefits and drawbacks of the crop, and what they see as potential barriers to entry for prospective farmers. A survey of current Miscanthus growers in England and Wales was conducted and indicated that most farmers were content with the crop and that its environmental and economic benefits were noted. However, it was evident that with a geographically limited UK market, growers wanted to see a better distribution of biomass processing stations to reduce the ongoing costs of transport. With growing demand for renewables, including bio-energy sources, it was determined important to provide information and support for stable farming operations and to incentivise the adoption of Miscanthus. Such incentives include ongoing development of new cultivars, focussing on traits such as production potential and stressor resilience, and growers indicated preference for an annual planting grant. These developments are predicted to further improve the crop's profit margin, making it a more cost-effective crop for farmers. Sensitively managed Miscanthus also has the potential to contribute to carbon sequestration, soil health, and aspects of farmland biodiversity. Incentivising such management in government land-based environmental schemes would offer additional income streams and help to promote environmental positive crop planting.

16.
Plants (Basel) ; 12(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36616227

RESUMO

Climate change and man-made pollution can have a negative impact on the establishment of Miscanthus plants in the field. This is particularly important because biomass can be produced on marginal land without conflicting with food crops. The establishment success depends on the hybrid chosen, the cultivation method, the climatic conditions, and the concentration of pollutants in the soil. There are several ways to increase the survival rate of the plants during the first growing season and after the first winter. One of them is the application of biochar and photodegradable plastic mulch, which can provide a solution for soils polluted with trace elements (TMEs). The aim of this study was to investigate the application of plastic mulch and biochar separately and in combination at the planting stage for two Miscanthus hybrids planted by the rhizome method (TV1) and seedling plugs (GNT43) on soils contaminated with trace metal elements (Pb, Cd, Zn). TV1 seems unsuitable for TME-contaminated field cultivation, as the survival rate was <60% in most treatments studied. The selected treatments did not increase the survival rate. Furthermore, the application of plastic mulch in combination with biochar resulted in a significant reduction of this parameter, regardless of the hybrid studied. The applied agrotechnology did not influence the TME accumulation in the aboveground plant parts in TV1, while Pb and Cd in GNT43 showed significantly higher values in all treatments. Contrary to expectations, biochar and plastic mulch applied separately and together neither increased survival nor reduced the accumulation of toxic TMEs during establishment on soil contaminated with TMEs and after the first growing season.

17.
Glob Change Biol Bioenergy ; 13(1): 98-111, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33381230

RESUMO

Flowering in perennial species is directed via complex signalling pathways that adjust to developmental regulations and environmental cues. Synchronized flowering in certain environments is a prerequisite to commercial seed production, and so the elucidation of the genetic architecture of flowering time in Miscanthus and switchgrass could aid breeding in these underdeveloped species. In this context, we assessed a mapping population in Miscanthus and two ecologically diverse switchgrass mapping populations over 3 years from planting. Multiple flowering time quantitative trait loci (QTL) were identified in both species. Remarkably, the most significant Miscanthus and switchgrass QTL proved to be syntenic, located on linkage groups 4 and 2, with logarithm of odds scores of 17.05 and 21.8 respectively. These QTL regions contained three flowering time transcription factors: Squamosa Promoter-binding protein-Like, MADS-box SEPELLATA2 and gibberellin-responsive bHLH137. The former is emerging as a key component of the age-related flowering time pathway.

18.
Glob Change Biol Bioenergy ; 12(6): 396-409, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32612681

RESUMO

High yielding perennial crops are being developed as a sustainable feedstock for renewable energy and bioproducts. Miscanthus is a leading biomass crop, but most plantations comprise a sterile hybrid Miscanthus × giganteus that is clonally propagated. To develop new varieties across large areas, rhizome cloning is inefficient, time consuming and expensive. Alternative approaches use seed, and in temperate regions, this has been successfully applied by raising seedlings as plug plants in glasshouses before transfer to the field. Direct sowing has yet to be proven commercially viable because poor germination has resulted in inconsistent stand establishment. Oversowing using seed clusters is a common approach to improve the establishment of crops and it was hypothesized that such an approach will improve uniformity of density in early Miscanthus stands and thereby improve yield. Sowing multiple seeds creates potential for new interactions, and we identified at least two inhibitory mechanisms related to seed numbers. Germinating seed produced allelopathic effects on nearby seed thereby inhibiting plant growth. The inhibitory effect of Miscanthus seed on germination percentages was related to seed number within clusters. An extract from germinating Miscanthus seed inhibited the germination of Miscanthus seed. The extract was analysed by HPLC, which identified a complex mixture including several known allelopathic compounds including proanthocyanidins and vanillic acid. There was also evidence of root competition in soil in a controlled environment experiment. When the experiment on competition was replicated at field scale, the establishment rates were much lower and there was evidence of shoot competition. We conclude that the numbers of seed required to ensure an acceptable level of establishment in the field may be economically impractical until other agronomic techniques are included either to reduce the inhibitory effects of higher seed numbers or to reduce oversowing rates.

19.
Sci Rep ; 10(1): 1602, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005862

RESUMO

The Miscanthus genus of perennial grasses is grown for bioenergy and biorenewable feedstocks. Most Miscanthus crop is M × giganteus which is rhizome propagated and therefore difficult to multiply at large scale. Seed-based propagation of new hybrids is being developed, but Miscanthus is difficult to establish from seed especially in the field. Miscanthus is often grown on marginal land adding to the challenge of successfully establishing the crop. Improved understanding of the limits and biology of germination in Miscanthus species is needed. Seed germination is affected by physical and chemical factors that impact germination differently depending on level of exposure. In this investigation of Miscanthus germination, four hormones plus water stress were investigated and the range over which these factors affect germination was determined. An efficient Taguchi experimental design was used to assess the five factors in combination with the effects of light and seed priming. This determined an example of a set of optimum conditions for Miscanthus germination and demonstrated how this could change based on fixing one condition. The experiment showed how environmental stress impacted germination and how treatments such as gibberellic acid could be used to mitigate stress.


Assuntos
Germinação/fisiologia , Poaceae/fisiologia , Rizoma/fisiologia , Sementes/fisiologia , Estresse Fisiológico/fisiologia
20.
Glob Change Biol Bioenergy ; 12(5): 310-327, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32421018

RESUMO

Spatially explicit farm-gate production costs and the economic potential of three types of energy crops grown on available marginal land in China for 2017 and 2040 were investigated using a spatial accounting method and construction of cost-supply curves. The average farm-gate cost from all available marginal land was calculated as 32.9 CNY/GJ for Miscanthus Mode, 27.5 CNY/GJ for Switchgrass Mode, 32.4 CNY/GJ for Miscanthus & Switchgrass Mode, and 909 CNY/GJ for Jatropha Mode in 2017. The costs of Miscanthus and switchgrass were predicted to decrease by approximately 11%-15%, whereas the cost of Jatropha was expected to increase by 5% in 2040. The cost of Jatropha varies significantly from 193 to 9,477 CNY/GJ across regions because of the huge differences in yield across regions. The economic potential of the marginal land was calculated as 28.7 EJ/year at a cost of less than 25 CNY/GJ for Miscanthus Mode, 4.0 EJ/year at a cost of less than 30 CNY/GJ for Switchgrass Mode, 29.6 EJ/year at a cost of less than 25 CNY/GJ for Miscanthus & Switchgrass Mode, and 0.1 EJ/year at a cost of less than 500 CNY/GJ for Jatropha Mode in 2017. It is not feasible to develop Jatropha production on marginal land based on existing technologies, given its high production costs. Therefore, the Miscanthus & Switchgrass Mode is the most economical way, because it achieves the highest economic potential compared with other modes. The sensitivity analysis showed that the farm-gate costs of Miscanthus and switchgrass are most sensitive to uncertainties associated with yield reduction and harvesting costs, while, for Jatropha, the unpredictable yield has the greatest impact on its farm-gate cost. This study can help policymakers and industrial stakeholders make strategic and tactical bioenergy development plans in China (exchange rate in 2017: 1€ = 7.63ï¿¥; all the joules in this paper are higher heat value).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa