Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Alzheimers Dement ; 18(2): 307-317, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34151536

RESUMO

INTRODUCTION: Analysis of sequence data in high-risk pedigrees is a powerful approach to detect rare predisposition variants. METHODS: Rare, shared candidate predisposition variants were identified from exome sequencing 19 Alzheimer's disease (AD)-affected cousin pairs selected from high-risk pedigrees. Variants were further prioritized by risk association in various external datasets. Candidate variants emerging from these analyses were tested for co-segregation to additional affected relatives of the original sequenced pedigree members. RESULTS: AD-affected high-risk cousin pairs contained 564 shared rare variants. Eleven variants spanning 10 genes were prioritized in external datasets: rs201665195 (ABCA7), and rs28933981 (TTR) were previously implicated in AD pathology; rs141402160 (NOTCH3) and rs140914494 (NOTCH3) were previously reported; rs200290640 (PIDD1) and rs199752248 (PIDD1) were present in more than one cousin pair; rs61729902 (SNAP91), rs140129800 (COX6A2, AC026471), and rs191804178 (MUC16) were not present in a longevity cohort; and rs148294193 (PELI3) and rs147599881 (FCHO1) approached significance from analysis of AD-related phenotypes. Three variants were validated via evidence of co-segregation to additional relatives (PELI3, ABCA7, and SNAP91). DISCUSSION: These analyses support ABCA7 and TTR as AD risk genes, expand on previously reported NOTCH3 variant identification, and prioritize seven additional candidate variants.


Assuntos
Doença de Alzheimer , Transportadores de Cassetes de Ligação de ATP/genética , Doença de Alzheimer/genética , Predisposição Genética para Doença/genética , Genótipo , Humanos , Longevidade , Proteínas de Membrana/genética , Linhagem
2.
Neurobiol Dis ; 143: 104972, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574725

RESUMO

BACKGROUND: Longevity as a phenotype entails living longer than average and typically includes living without chronic age-related diseases. Recently, several common genetic components to longevity have been identified. This study aims to identify additional genetic variants associated with longevity using unique and powerful analyses of pedigrees with a statistical excess of healthy elderly individuals identified in the Utah Population Database (UPDB). METHODS: From an existing biorepository of Utah pedigrees, six independent cousin pairs were selected from four extended pedigrees that exhibited an excess of healthy elderly individuals; whole exome sequencing (WES) was performed on two elderly individuals from each pedigree who were either first cousins or first cousins once removed. Rare (<.01 population frequency) variants shared by at least one elderly cousin pair in a region likely to be identical by descent were identified as candidates. Ingenuity Variant Analysis was used to prioritize putative causal variants based on quality control, frequency, and gain or loss of function. The variant frequency was compared in healthy cohorts and in an Alzheimer's disease cohort. Remaining variants were filtered based on their presence in genes reported to have an effect on the aging process, aging of cells, or the longevity process. Validation of these candidate variants included tests of segregation on other elderly relatives. RESULTS: Fifteen rare candidate genetic variants spanning 17 genes shared within cousins were identified as having passed prioritization criteria. Of those variants, six were present in genes that are known or predicted to affect the aging process: rs78408340 (PAM), rs112892337 (ZFAT), rs61737629 (ESPL1), rs141903485 (CEBPE), rs144369314 (UTP4), and rs61753103 (NUP88 and RABEP1). ESPL1 rs61737629 and CEBPE rs141903485 show additional evidence of segregation with longevity in expanded pedigree analyses (p-values = .001 and .0001, respectively). DISCUSSION: This unique pedigree analysis efficiently identified several novel rare candidate variants that may affect the aging process and added support to seven genes that likely contribute to longevity. Further analyses showed evidence for segregation for two rare variants, ESPL1 rs61737629 and CEBPE rs141903485, in the original longevity pedigrees in which they were initially observed. These candidate genes and variants warrant further investigation.


Assuntos
Envelhecimento/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Longevidade/genética , Separase/genética , Idoso , Feminino , Variação Genética , Genótipo , Humanos , Masculino , Linhagem
3.
medRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38076997

RESUMO

Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs)1-3. Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (network-based epistasis detection via local search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL is the first application that demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies.

4.
Commun Biol ; 5(1): 899, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056235

RESUMO

The process of identifying suitable genome-wide association (GWA) studies and formatting the data to calculate multiple polygenic risk scores on a single genome can be laborious. Here, we present a centralized polygenic risk score calculator currently containing over 250,000 genetic variant associations from the NHGRI-EBI GWAS Catalog for users to easily calculate sample-specific polygenic risk scores with comparable results to other available tools. Polygenic risk scores are calculated either online through the Polygenic Risk Score Knowledge Base (PRSKB; https://prs.byu.edu ) or via a command-line interface. We report study-specific polygenic risk scores across the UK Biobank, 1000 Genomes, and the Alzheimer's Disease Neuroimaging Initiative (ADNI), contextualize computed scores, and identify potentially confounding genetic risk factors in ADNI. We introduce a streamlined analysis tool and web interface to calculate and contextualize polygenic risk scores across various studies, which we anticipate will facilitate a wider adaptation of polygenic risk scores in future disease research.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Predisposição Genética para Doença , Humanos , Bases de Conhecimento , Polimorfismo de Nucleotídeo Único , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa