Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Radiographics ; 42(2): 451-468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35119967

RESUMO

As the medical applications of three-dimensional (3D) printing increase, so does the number of health care organizations in which adoption or expansion of 3D printing facilities is under consideration. With recent advancements in 3D printing technology, medical practitioners have embraced this powerful tool to help them to deliver high-quality patient care, with a focus on sustainability. The use of 3D printing in the hospital or clinic at the point of care (POC) has profound potential, but its adoption is not without unanticipated challenges and considerations. The authors provide the basic principles and considerations for building the infrastructure to support 3D printing inside the hospital. This process includes building a business case; determining the requirements for facilities, space, and staff; designing a digital workflow; and considering how electronic health records may have a role in the future. The authors also discuss the supported applications and benefits of medical 3D printing and briefly highlight quality and regulatory considerations. The information presented is meant to be a practical guide to assist radiology departments in exploring the possibilities of POC 3D printing and expanding it from a niche application to a fixture of clinical care. An invited commentary by Ballard is available online. ©RSNA, 2022.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Impressão Tridimensional , Humanos
2.
Radiographics ; 41(4): 1208-1229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197247

RESUMO

The adoption of three-dimensional (3D) printing is rapidly spreading across hospitals, and the complexity of 3D-printed models and devices is growing. While exciting, the rapid growth and increasing complexity also put patients at increased risk for potential errors and decreased quality of the final product. More than ever, a strong quality management system (QMS) must be in place to identify potential errors, mitigate those errors, and continually enhance the quality of the product that is delivered to patients. The continuous repetition of the traditional processes of care, without insight into the positive or negative impact, is ultimately detrimental to the delivery of patient care. Repetitive tasks within a process can be measured, refined, and improved and translate into high levels of quality, and the same is true within the 3D printing process. The authors share their own experiences and growing pains in building a QMS into their 3D printing processes. They highlight errors encountered along the way, how they were addressed, and how they have strived to improve consistency, facilitate communication, and replicate successes. They also describe the vital intersection of health care providers, regulatory groups, and traditional manufacturers, who contribute essential elements to a common goal of providing quality and safety to patients. ©RSNA, 2021.


Assuntos
Hospitais , Impressão Tridimensional , Comunicação , Humanos
3.
Opt Lett ; 39(10): 3010-3, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978260

RESUMO

We have investigated the potential of tissue phantoms fabricated with thermosoftening- and photopolymerization-based three-dimensional (3D) printers for use in evaluation of biophotonic imaging systems. The optical properties of printed polymer samples were measured and compared to biological tissues. Phantoms with subsurface channels as small as 0.2 mm in diameter were fabricated and imaged with microscopy, x-ray microtomography, and optical coherence tomography to characterize morphology. These phantoms were then implemented to evaluate the penetration depth of a hyperspectral reflectance imaging system used in conjunction with a near-infrared contrast agent. Results indicated that 3D printing may provide a suitable platform for performance testing in biophotonics, although subsurface imaging is critical to mitigate printer-to-printer variability in matrix homogeneity and feature microstructure.


Assuntos
Materiais Biomiméticos/síntese química , Imagens de Fantasmas , Polímeros/química , Impressão Tridimensional/instrumentação , Tomografia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
4.
Soft Matter ; 10(13): 2304-12, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24795963

RESUMO

An aqueous hyaluronic acid (HA(aq)) pericellular coat, when mediating the tactile aspect of cellular contact inhibition, has three tasks: interface formation, mechanical signal transmission and interface separation. To quantify the interfacial adhesive behavior of HA(aq), we induce simultaneous interface formation and separation between HA(aq) and a model hydrophobic, hysteretic Si-SAM surface. While surface tension γ remains essentially constant, interface formation and separation depend greatly on concentration (5 ≤ C ≤ 30 mg mL(-1)), molecular weight (6 ≤ MW ≤ 2000 kDa) and interfacial velocity (0 ≤ V ≤ 3 mm s(-1)), each of which affect shear elastic and loss moduli G' and G'', respectively. Viscoelasticity dictates the mode of interfacial motion: wetting-dewetting, capillary necking, or rolling. Wetting-dewetting is quantified using advancing and receding contact angles θ(A) and θ(R), and the hysteresis between them, yielding data landscapes for each C above the [MW, V] plane. The landscape sizes, shapes, and curvatures disclose the interplay, between surface tension and viscoelasticity, which governs interfacial dynamics. Gel point coordinates modulus G and angular frequency ω appear to predict wetting-dewetting (G < 75 ω0.2), capillary necking (75 ω0.2 < G < 200 ω0.075) or rolling (G > 200ω0.075). Dominantly dissipative HA(aq) sticks to itself and distorts irreversibly before separating, while dominantly elastic HA(aq) makes contact and separates with only minor, reversible distortion. We propose the dimensionless number (G'V)/(ω(r)γ), varying from 10(-5) to 10(3) in this work, as a tool to predict the mode of interface formation-separation by relating interfacial kinetics with bulk viscoelasticity. Cellular contact inhibition may be thus aided or compromised by physiological or interventional shifts in [C, MW, V], and thus in (G'V)/(ω(r)γ), which affect both mechanotransduction and interfacial dynamics. These observations, understood in terms of physical properties, may be broadened to probe interfacial dynamics of other viscoelastic aqueous biopolymers.


Assuntos
Ácido Hialurônico/química , Módulo de Elasticidade , Elasticidade , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Viscosidade , Água/química
5.
3D Print Med ; 8(1): 18, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35748984

RESUMO

BACKGROUND: 3D printing (3DP) has enabled medical professionals to create patient-specific medical devices to assist in surgical planning. Anatomical models can be generated from patient scans using a wide array of software, but there are limited studies on the geometric variance that is introduced during the digital conversion of images to models. The final accuracy of the 3D printed model is a function of manufacturing hardware quality control and the variability introduced during the multiple digital steps that convert patient scans to a printable format. This study provides a brief summary of common algorithms used for segmentation and refinement. Parameters for each that can introduce geometric variability are also identified. Several metrics for measuring variability between models and validating processes are explored and assessed. METHODS: Using a clinical maxillofacial CT scan of a patient with a tumor of the mandible, four segmentation and refinement workflows were processed using four software packages. Differences in segmentation were calculated using several techniques including volumetric, surface, linear, global, and local measurements. RESULTS: Visual inspection of print-ready models showed distinct differences in the thickness of the medial wall of the mandible adjacent to the tumor. Volumetric intersections and heatmaps provided useful local metrics of mismatch or variance between models made by different workflows. They also allowed calculations of aggregate percentage agreement and disagreement which provided a global benchmark metric. For the relevant regions of interest (ROIs), statistically significant differences were found in the volume and surface area comparisons for the final mandible and tumor models, as well as between measurements of the nerve central path. As with all clinical use cases, statistically significant results must be weighed against the clinical significance of any deviations found. CONCLUSIONS: Statistically significant geometric variations from differences in segmentation and refinement algorithms can be introduced into patient-specific models. No single metric was able to capture the true accuracy of the final models. However, a combination of global and local measurements provided an understanding of important geometric variations. The clinical implications of each geometric variation is different for each anatomical location and should be evaluated on a case-by-case basis by clinicians familiar with the process. Understanding the basic segmentation and refinement functions of software is essential for sites to create a baseline from which to evaluate their standard workflows, user training, and inter-user variability when using patient-specific models for clinical interventions or decisions.

6.
Animals (Basel) ; 12(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36077882

RESUMO

The athletic performance and safety of racehorses is influenced by hoof−surface interactions. This intervention study assessed the effect of eight horseshoe−surface combinations on hoof acceleration patterns at impact and foot-off in 13 galloping Thoroughbred racehorses retired from racing. Aluminium, barefoot, GluShu (aluminium−rubber composite) and steel shoeing conditions were trialled on turf and artificial (Martin Collins Activ-Track) surfaces. Shod conditions were applied across all four hooves. Tri-axial accelerometers (SlamStickX, range ±500 g, sampling rate 5000 Hz) were attached to the dorsal hoof wall (x: medio-lateral, medial = positive; y: along dorsal hoof wall, proximal = positive; and z: perpendicular to hoof wall, dorsal = positive). Linear mixed models assessed whether surface, shoeing condition or stride time influenced maximum (most positive) or minimum (most negative) accelerations in x, y and z directions, using ≥40,691 strides (significance at p < 0.05). Day and horse−rider pair were included as random factors, and stride time was included as a covariate. Collective mean accelerations across x, y and z axes were 22−98 g at impact and 17−89 g at foot-off. The mean stride time was 0.48 ± 0.07 s (mean ±2 SD). Impact accelerations were larger on turf in all directions for forelimbs and hindlimbs (p ≤ 0.015), with the exception of the forelimb z-minimum, and in absolute terms, maximum values were typically double the minimum values. The surface type affected all foot-off accelerations (p ≤ 0.022), with the exception of the hindlimb x-maximum; for example, there was an average increase of 17% in z-maximum across limbs on the artificial track. The shoeing condition influenced all impact and foot-off accelerations in the forelimb and hindlimb datasets (p ≤ 0.024), with the exception of the hindlimb impact y-maximum. Barefoot hooves generally experienced the lowest accelerations. The stride time affected all impact and foot-off accelerations (p < 0.001). Identifying factors influencing hoof vibrations upon landing and hoof motion during propulsion bears implication for injury risk and racing outcomes.

7.
J Equine Vet Sci ; 97: 103327, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33478759

RESUMO

Riding racehorses is a high-risk profession and optimizing safety alongside performance is paramount. Horseshoes play a critical role in providing traction with the ground surface and are therefore a major determinant of safety. However, the subjective perceptions of expert riders influence attitudes towards using different shoes and must be taken into consideration before any changes may be implemented. This study used a questionnaire-based method to evaluate jockey opinion of four shoeing conditions (aluminum, steel, GluShu, and barefoot) trialed at gallop over turf and artificial surfaces. Nine Lickert-style questions explored impact, cushioning, responsiveness, grip, uniformity, smoothness of ride, safety, adaptation period, and overall rating for each shoe-surface combination. A total of 94 questionnaires, based on 15 horse-rider pairs, were assessed using descriptive statistics and linear mixed models performed in SPSS (P < .05). Data indicate that shoe type significantly affected all question responses, with the exception of impact. Surface-type significantly affected perception of grip and safety. Overall, jockeys showed a preference for aluminum and steel shoes across both artificial and turf tracks. These rated "excellent" and were considered to be "very supportive" in approximately 80% of trials, with a 100% "active" response, good grip, and a quick adaptation period. In contrast, barefoot and GluShu conditions were generally considered "moderately supportive," with barefoot appearing favorable on the artificial surface. On turf, barefoot was deemed the least smooth and the only condition that jockeys sometimes marked "unsafe" (17% of responses). Future work aims to investigate the relationship between jockey opinion and hoof kinematic data.


Assuntos
Casco e Garras , Animais , Fenômenos Biomecânicos , Cavalos , Percepção , Sapatos
8.
Animals (Basel) ; 11(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34573553

RESUMO

Understanding the effect of horseshoe-surface combinations on hoof kinematics at gallop is relevant for optimising performance and minimising injury in racehorse-jockey dyads. This intervention study assessed hoof breakover duration in Thoroughbred ex-racehorses from the British Racing School galloping on turf and artificial tracks in four shoeing conditions: aluminium, barefoot, aluminium-rubber composite (GluShu) and steel. Shoe-surface combinations were tested in a randomized order and horse-jockey pairings (n = 14) remained constant. High-speed video cameras (Sony DSC-RX100M5) filmed the hoof-ground interactions at 1000 frames per second. The time taken for a hoof marker wand fixed to the lateral hoof wall to rotate through an angle of 90 degrees during 384 breakover events was quantified using Tracker software. Data were collected for leading and non-leading forelimbs and hindlimbs, at gallop speeds ranging from 23-56 km h-1. Linear mixed-models assessed whether speed, surface, shoeing condition and any interaction between these parameters (fixed factors) significantly affected breakover duration. Day and horse-jockey pair were included as random factors and speed was included as a covariate. The significance threshold was set at p < 0.05. For all limbs, breakover times decreased as gallop speed increased (p < 0.0005), although a greater relative reduction in breakover duration for hindlimbs was apparent beyond approximately 45 km h-1. Breakover duration was longer on turf compared to the artificial surface (p ≤ 0.04). In the non-leading hindlimb only, breakover duration was affected by shoeing condition (p = 0.025) and an interaction between shoeing condition and speed (p = 0.023). This work demonstrates that speed, ground surface and shoeing condition are important factors influencing the galloping gait of the Thoroughbred racehorse.

9.
PLoS One ; 16(11): e0257820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34813584

RESUMO

Horseshoes influence how horses' hooves interact with different ground surfaces, during the impact, loading and push-off phases of a stride cycle. Consequently, they impact on the biomechanics of horses' proximal limb segments and upper body. By implication, different shoe and surface combinations could drive changes in the magnitude and stability of movement patterns in horse-jockey dyads. This study aimed to quantify centre of mass (COM) displacements in horse-jockey dyads galloping on turf and artificial tracks in four shoeing conditions: 1) aluminium; 2) barefoot; 3) GluShu; and 4) steel. Thirteen retired racehorses and two jockeys at the British Racing School were recruited for this intervention study. Tri-axial acceleration data were collected close to the COM for the horse (girth) and jockey (kidney-belt), using iPhones (Apple Inc.) equipped with an iOS app (SensorLog, sample rate = 50 Hz). Shoe-surface combinations were tested in a randomized order and horse-jockey pairings remained constant. Tri-axial acceleration data from gallop runs were filtered using bandpass Butterworth filters with cut-off frequencies of 15 Hz and 1 Hz, then integrated for displacement using Matlab. Peak displacement was assessed in both directions (positive 'maxima', negative 'minima') along the cranio-caudal (CC, positive = forwards), medio-lateral (ML, positive = right) and dorso-ventral (DV, positive = up) axes for all strides with frequency ≥2 Hz (mean = 2.06 Hz). Linear mixed-models determined whether surfaces, shoes or shoe-surface interactions (fixed factors) significantly affected the displacement patterns observed, with day, run and horse-jockey pairs included as random factors; significance was set at p<0.05. Data indicated that surface-type significantly affected peak COM displacements in all directions for the horse (p<0.0005) and for all directions (p≤0.008) but forwards in the jockey. The largest differences were observed in the DV-axis, with an additional 5.7 mm and 2.5 mm of downwards displacement for the horse and jockey, respectively, on the artificial surface. Shoeing condition significantly affected all displacement parameters except ML-axis minima for the horse (p≤0.007), and all displacement parameters for the jockey (p<0.0005). Absolute differences were again largest vertically, with notable similarities amongst displacements from barefoot and aluminium trials compared to GluShu and steel. Shoe-surface interactions affected all but CC-axis minima for the jockey (p≤0.002), but only the ML-axis minima and maxima and DV-axis maxima for the horse (p≤0.008). The results support the idea that hoof-surface interface interventions can significantly affect horse and jockey upper-body displacements. Greater sink of hooves on impact, combined with increased push-off during the propulsive phase, could explain the higher vertical displacements on the artificial track. Variations in distal limb mass associated with shoe-type may drive compensatory COM displacements to minimize the energetic cost of movement. The artificial surface and steel shoes provoked the least CC-axis movement of the jockey, so may promote greatest stability. However, differences between horse and jockey mean displacements indicated DV-axis and CC-axis offsets with compensatory increases and decreases, suggesting the dyad might operate within displacement limits to maintain stability. Further work is needed to relate COM displacements to hoof kinematics and to determine whether there is an optimum configuration of COM displacement to optimise performance and minimise injury.


Assuntos
Casco e Garras/fisiologia , Cavalos/fisiologia , Locomoção/fisiologia , Aceleração , Animais , Fenômenos Biomecânicos , Intervalos de Confiança , Análise de Dados , Modelos Lineares
10.
IEEE Trans Biomed Circuits Syst ; 15(2): 281-293, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33729949

RESUMO

Implantable motor neuroprostheses can restore functionality to individuals with neurological disabilities by electrically activating paralyzed muscles in coordinated patterns. The typical design of neuroprosthetic systems relies on a single multi-use device, but this limits the number of stimulus and sensor channels that can be practically implemented. To address this limitation, a modular neuroprosthesis, the "Networked Neuroprosthesis" (NNP), was developed. The NNP system is the first fully implanted modular neuroprosthesis that includes implantation of all power, signal processing, biopotential signal recording, and stimulating components. This paper describes the design of stimulation and recording modules, bench testing to verify stimulus outputs and appropriate filtering and recording, and validation that the components function properly while implemented in persons with spinal cord injury. The results of system testing demonstrated that the NNP was functional and capable of generating stimulus pulses and recording myoelectric, temperature, and accelerometer signals. Based on the successful design, manufacturing, and testing of the NNP System, multiple clinical applications are anticipated.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Redes de Comunicação de Computadores , Humanos , Próteses e Implantes , Processamento de Sinais Assistido por Computador , Traumatismos da Medula Espinal/terapia
11.
Disaster Med Public Health Prep ; 14(2): 273-283, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31397260

RESUMO

The aim of this systematic review is to evaluate the impact of personal protective equipment (PPE) on medical device use during public health emergency responses. We conducted a systematic literature search of peer-reviewed journals in PubMed, Web of Science, and EBSCO databases. Twenty-nine of 92 articles published between 1984 and 2015 met the inclusion criteria for the review. Although many medical device use impacts were reported, they predominantly fell into 3 categories: airway management, drug administration, and diagnostics and monitoring. Chemical, biological, radiological, and nuclear (CBRN)-PPE increased completion times for emergency clinical procedures by as much as 130% and first attempt failure rates by 35% (anesthetist) versus 55% (non-anesthetist). Effects of CBRN-PPE use depend on device, CBRN-PPE level, and clinician experience and training. Continuous clinical training of responders in CBRN-PPE and device modifications can improve safety and effectiveness of medical device use during public health emergency response.


Assuntos
Equipamentos e Provisões/normas , Equipamento de Proteção Individual/efeitos adversos , Saúde Pública/métodos , Humanos , Equipamento de Proteção Individual/normas , Saúde Pública/tendências
12.
Int J Pharm ; 554: 292-301, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30439491

RESUMO

The rheological characteristics of pastes for 3D printing of tablets may not be described fully by the traditional rheological tests generally used for other pastes. In the present study, extrudability testing of carbopol based 3D printing pastes was performed to establish a constitutive rheological model for micro-extrusion. This model was developed for pastes that exhibit a non-linear plasto-viscoelastic behavior and follow the generalized Herschel-Bulkley flow rule. An analytical model was applied to extrudability data obtained by micro-extrusion through nozzles of 0.4 and 0.6 mm diameters. For this purpose, nineteen pastes were prepared per a fractional factorial design using various concentrations of the active ingredient and soluble and insoluble excipients. Critical material parameters (σ0, k and n) of the pastes were then calculated by analyzing extrudability data using a constitutive equation relating flow rate, nozzle and cartridge diameters, printing pressure and slip-flow angle. The accuracy of the constitutive model to predict paste yield stress, consistency and flow indices was evident by low RMSE values of 0.0691 bar, 0.034 and 6.3 bar/sn, respectively. Yield stress, flow and consistency parameters of the pastes were significantly affected by percentages of soluble and swellable excipients. The nozzle diameter had significant effect on flow index (n) but not on the consistency index (k). Hence, this study provides a mechanistic model to characterize the complex rheological behavior of pastes for 3D printing of tablets by a micro-extrusion process.


Assuntos
Química Farmacêutica/métodos , Excipientes/química , Impressão Tridimensional , Tecnologia Farmacêutica/métodos , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Modelos Teóricos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Reologia , Solubilidade , Comprimidos
13.
Int J Pharm ; 555: 109-123, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30453019

RESUMO

The future of pharmaceutical manufacturing may be significantly transformed by 3-dimensional (3D) printing. As an emerging technology, the indicators of quality for materials and processes used in 3D printing have not been fully established. The objective of this study was to identify the critical material attributes of semisolid paste formulations filled into cartridges for 3D printing of personalized medicine. Nineteen semisolid formulations were prepared per a fractional factorial design with three replicates of the center point. The variables investigated included percent loading of API and various soluble and insoluble excipients. Pastes were characterized for viscoelastic characteristics during the 3D printing process including creep recovery, cross-modulus and extrudability models. Packing efficiency of pastes into 3D printing cartridges was also evaluated by X-ray tomography. Changes in composition of 3D printing pastes resulted in significant variations in their viscoelastic parameters, namely their elastic deformation, flow and relaxation behaviors. The percent of soluble excipients incorporated was the most significant factor affecting the creep behavior of pastes. Cross-over stresses were assessed to indicate the minimum pressure needed for the pastes to initiate flow. Increasing solid and swellable contents of the pastes from 7% to 63% w/w increased significantly (p < 0.05) the cross-over stress from 0.93 × 10-3 Pa to 9.47 × 10-3 Pa. Increasing soluble ingredients of paste from 30% to 80% w/w was found to increase flow of the paste from 0.41 × 10-3 to 3.85 × 10-3 %/s. X-ray tomography images revealed inclusion of air bubbles during packing of pastes into cartridges. These bubbles may affect the relaxation behavior of the pastes; hence bubbles should be eliminated. This study unveiled the critical material attributes that could be controlled for consistent 3D printing by microextrusion.


Assuntos
Excipientes/química , Modelos Teóricos , Impressão Tridimensional , Tecnologia Farmacêutica/métodos , Química Farmacêutica/métodos , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Solubilidade , Comprimidos
14.
Adv Healthc Mater ; 8(5): e1801471, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30707508

RESUMO

The skin is responsible for several important physiological functions and has enormous clinical significance in wound healing. Tissue engineered substitutes may be used in patients suffering from skin injuries to support regeneration of the epidermis, dermis, or both. Skin substitutes are also gaining traction in the cosmetics and pharmaceutical industries as alternatives to animal models for product testing. Recent biomedical advances, ranging from cellular-level therapies such as mesenchymal stem cell or growth factor delivery, to large-scale biofabrication techniques including 3D printing, have enabled the implementation of unique strategies and novel biomaterials to recapitulate the biological, architectural, and functional complexity of native skin. This progress report highlights some of the latest approaches to skin regeneration and biofabrication using tissue engineering techniques. Current challenges in fabricating multilayered skin are addressed, and perspectives on efforts and strategies to meet those limitations are provided. Commercially available skin substitute technologies are also examined, and strategies to recapitulate native physiology, the role of regulatory agencies in supporting translation, as well as current clinical needs, are reviewed. By considering each of these perspectives while moving from bench to bedside, tissue engineering may be leveraged to create improved skin substitutes for both in vitro testing and clinical applications.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Pele/citologia , Engenharia Tecidual/métodos , Pesquisa Translacional Biomédica/métodos , Animais , Humanos , Impressão Tridimensional , Regeneração/fisiologia , Pele Artificial , Alicerces Teciduais/química , Cicatrização/fisiologia
15.
Sci Transl Med ; 10(461)2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282697

RESUMO

Additive manufacturing [also known as three-dimensional (3D) printing] is the layer-wise deposition of material to produce a 3D object. This rapidly emerging technology has the potential to produce new medical products with unprecedented structural and functional designs. Here, we describe the U.S. regulatory landscape of additive manufactured (3D-printed) medical devices and biologics and highlight key challenges and considerations.


Assuntos
Equipamentos e Provisões , Impressão Tridimensional/legislação & jurisprudência , Controle Social Formal , Animais , Produtos Biológicos/uso terapêutico , Humanos , Medicina Regenerativa
16.
J Biomed Mater Res A ; 81(1): 250-6, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17269134

RESUMO

A new acellular, natural, biodegradable matrix has been discovered in the cholecyst-derived extracellular matrix (CEM). This matrix is rich in collagen and contains several other macromolecules useful in tissue remodeling. In this study, the principal material axes, collagen fiber orientations, and biaxial mechanical properties in a physiological loading regime were characterized. Fiber direction was determined by polarized light microscopy, and the principal axes and degree of anisotropy were determined mechanically. Macroscopic equibiaxial strain tests were then conducted on preconditioned specimens. While 13% of the area of CEM contains collagen fibers oriented between 50 degrees and 60 degrees from the neck-fundus axis, the principal material axis was oriented 63 degrees +/- 13.7 degrees , with an aspect ratio of 0.11 +/- 0.06, indicating a weak anisotropy in that direction. Under biaxial loading, CEM exhibited a large toe region followed by an exponential rise in stress in both principal and perpendicular axis directions, similar to other materials currently under research. There was no significant difference between the biaxial stress-strain profile and the burst stress-strain profile. The results demonstrate that CEM is weakly anisotropic and it has the ability to support large strains across a physiological loading regime.


Assuntos
Materiais Biocompatíveis , Matriz Extracelular , Vesícula Biliar , Engenharia Tecidual , Animais , Anisotropia , Materiais Biocompatíveis/química , Matriz Extracelular/química , Vesícula Biliar/química , Estresse Mecânico , Suínos , Resistência à Tração
17.
J Biomech ; 40(1): 203-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-16427059

RESUMO

The eight small and complexly shaped carpal bones of the wrist articulate in six degrees of freedom with each other and to some extent with the radius and the metacarpals. With the increasing number and sophistication of studies of the carpus, a standardized definition for a coordinate system for each the carpal bones would aid in the reporting and comparison of findings. This paper presents a method for defining and constructing a coordinate system specific to each of the eight carpal bones based upon the inertial properties of the bone, derived from surface models constructed from three-dimensional (3-D) medical image volumes. Surface models from both wrists of 5 male and 5 female subjects were generated from CT image volumes in two neutral wrist positions (functional and clinical). An automated algorithm found the principal inertial axes and oriented them according to preset conditions in 85% of the bones, the remaining bones were corrected manually. Six of the eight carpal bones were significantly more extended in the functional neutral position than in the clinical neutral position. Gender had no significant effect on carpal bone posture in either wrist position. Correlations between the 3-D carpal posture and the commonly used 2-D clinical radiographic carpal angles are established. 3-D coordinate systems defined by the anatomy of the carpal bone, such as the ones presented here, are necessary to completely describe 3-D changes in the posture of the carpal bones.


Assuntos
Ossos do Carpo/anatomia & histologia , Modelos Anatômicos , Adulto , Algoritmos , Fenômenos Biomecânicos , Ossos do Carpo/diagnóstico por imagem , Ossos do Carpo/fisiologia , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Rádio (Anatomia)/anatomia & histologia , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/fisiologia , Tomografia Computadorizada por Raios X , Ulna/anatomia & histologia , Ulna/diagnóstico por imagem , Ulna/fisiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-29974058

RESUMO

Additive manufacturing/3D printing of medical devices is becoming more commonplace, a 3D printed drug is now commercially available, and bioprinting is poised to transition from laboratory to market. Despite the variety of technologies enabling these products, the US Food and Drug Administration (FDA) is charged with protecting and promoting the public health by ensuring these products are safe and effective. To that end, we are presenting the FDA's current perspective on additive manufacturing/3D printing of medical products ranging from those regulated by the Center for Devices and Radiological Health (CDRH), the Center for Drug Evaluation and Research (CDER), and the Center for Biologics Evaluation and Research (CBER). Each Center presents an overview of the additively manufactured products in their area and the specific concerns and thoughts on using this technology in those product spaces.

19.
J Bone Joint Surg Am ; 87(12): 2729-2740, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16322624

RESUMO

BACKGROUND: Wrist motion is dependent on the complex articulations of the scaphoid and lunate at the radiocarpal joint. However, much of what is known about the radiocarpal joint is limited to the anatomically defined motions of flexion, extension, radial deviation, and ulnar deviation. The purpose of the present study was to determine the three-dimensional in vivo kinematics of the scaphoid and lunate throughout the entire range of wrist motion, with special focus on the dart thrower's wrist motion, from radial extension to ulnar flexion. METHODS: The three-dimensional kinematics of the capitate, scaphoid, and lunate were calculated from serial computed tomography scans of both wrists of fourteen healthy male subjects (average age, 25.6 years; range, twenty-two to thirty-four years) and fourteen healthy female subjects (average age, 23.6 years; range, twenty-one to twenty-eight years), which yielded data on a total of 504 distinct wrist positions. RESULTS: The scaphoid and lunate primarily flexed or extended in all directions of wrist motion, and their rotation varied linearly with the direction of wrist motion (R2= 0.90 and 0.82, respectively). Scaphoid and lunate motion was significantly less along the path of the dart thrower's motion than in any other direction of wrist motion (p < 0.01 for both carpal bones). The scaphoid and lunate translated radially (2 to 4 mm) when extended, but they did not translate appreciably when flexed. CONCLUSIONS: The dart thrower's path defined the transition between flexion and extension rotation of the scaphoid and lunate, and it identified wrist positions at which scaphoid and lunate motion approached zero. These findings indicate that this path of wrist motion confers a unique degree of radiocarpal stability and suggests that this direction, rather than the anatomical directions of wrist flexion-extension and radioulnar deviation, is the primary functional direction of the radiocarpal joint.


Assuntos
Capitato/fisiologia , Osso Semilunar/fisiologia , Osso Escafoide/fisiologia , Articulação do Punho/fisiologia , Adulto , Fenômenos Biomecânicos , Capitato/diagnóstico por imagem , Feminino , Humanos , Osso Semilunar/diagnóstico por imagem , Masculino , Amplitude de Movimento Articular , Osso Escafoide/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Articulação do Punho/diagnóstico por imagem
20.
J Biomech ; 48(10): 1828-35, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25980556

RESUMO

Manufacturers and investigators of Total Hip Replacement (THR) bearings require tools to predict the contact mechanics resulting from diverse design and loading parameters. This study provides contact mechanics solutions for metal-on-metal (MoM) bearings that encompass the current design space and could aid pre-clinical design optimization and evaluation. Stochastic finite element (FE) simulation was used to calculate the head-on-cup contact mechanics for five thousand combinations of design and loading parameters. FE results were used to train a Random Forest (RF) surrogate model to rapidly predict the contact patch dimensions, contact area, pressures and plastic deformations for arbitrary designs and loading. In addition to widely observed polar and edge contact, FE results included ring-polar, asymmetric-polar, and transitional categories which have previously received limited attention. Combinations of design and load parameters associated with each contact category were identified. Polar contact pressures were predicted in the range of 0-200 MPa with no permanent deformation. Edge loading (with subluxation) was associated with pressures greater than 500 MPa and induced permanent deformation in 83% of cases. Transitional-edge contact (with little subluxation) was associated with intermediate pressures and permanent deformation in most cases, indicating that, even with ideal anatomical alignment, bearings may face extreme wear challenges. Surrogate models were able to accurately predict contact mechanics 18,000 times faster than FE analyses. The developed surrogate models enable rapid prediction of MoM bearing contact mechanics across the most comprehensive range of loading and designs to date, and may be useful to those performing bearing design optimization or evaluation.


Assuntos
Artroplastia de Quadril/instrumentação , Artroplastia de Quadril/métodos , Prótese de Quadril , Desenho de Prótese/métodos , Algoritmos , Simulação por Computador , Elasticidade , Análise de Elementos Finitos , Humanos , Metais , Modelos Teóricos , Pressão , Processos Estocásticos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa