Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Neurophysiol ; 128(5): 1344-1354, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36286323

RESUMO

The plainfin midshipman, Porichthys notatus, is a seasonally breeding vocal fish that relies on acoustic communication to mediate nocturnal reproductive behaviors. Reproductive females use their auditory senses to detect and localize "singing" males that produce multiharmonic advertisement (mate) calls during the breeding season. Previous work showed that the midshipman saccule, which is considered the primary end organ used for hearing in midshipman and most other fishes, exhibits reproductive state and hormone-dependent changes that enhance saccular auditory sensitivity. In contrast, the utricle was previously posited to serve primarily a vestibular function, but recent evidence in midshipman and related toadfish suggests that it may also serve an auditory function and aid in the detection of behaviorally relevant acoustic stimuli. Here, we characterized the auditory-evoked potentials recorded from utricular hair cells in reproductive and nonreproductive female midshipman in response to underwater sound to test the hypothesis that variation in reproductive state affects utricular auditory sensitivity. We show that utricular hair cells in reproductive females exhibit up to a sixfold increase in the utricular potential magnitude and have thresholds based on measures of particle acceleration (re: 1 ms-2) that are 7-10 dB lower than nonreproductive females across a broad range of frequencies, which include the dominant harmonics of male advertisement calls. This enhanced auditory sensitivity of the utricle likely plays an essential role in facilitating midshipman social and reproductive acoustic communication.NEW & NOTEWORTHY In many animals, vocal-acoustic communication is fundamental for facilitating social behaviors. For the vocal plainfin midshipman fish, the detection and localization of social acoustic signals are critical to the species' reproductive success. Here, we show that the utricle, an inner ear end organ often thought to primarily serve a vestibular function, serves an auditory function that is seasonally plastic and modulated by the animal's reproductive state effectively enhancing auditory sensitivity to courting male advertisement calls.


Assuntos
Batracoidiformes , Animais , Feminino , Masculino , Batracoidiformes/fisiologia , Sáculo e Utrículo , Estimulação Acústica , Audição/fisiologia , Potenciais Evocados Auditivos/fisiologia , Vocalização Animal/fisiologia
2.
J Acoust Soc Am ; 148(2): 895, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32873010

RESUMO

This research examined the impacts of acoustic stress in peled (Coregonus peled Gmelin, 1788), a species commonly cultivated in Russia. This study presents a comparative analysis of the macula sacculi and otoliths, as well as primary hematological and secondary telomere stress responses, in control and sound-exposed peled. The authors measured the effects of long-term (up to 18 days) exposure to a 300 Hz tone at mean sound pressure levels of 176-186 dB re 1 µPa (SPLpk-pk); the frequency and intensity were selected to approximate loud acoustic environments associated with cleaning equipment in aquaculture settings. Acoustic exposure resulted in ultrastructure changes to otoliths, morphological damage to sensory hair cells of the macula sacculi, and a gradual decrease in the number of functionally active mitochondria in the red blood cells but no changes to telomeres. Changes were apparent following at least ten days of acoustic exposure. These data suggest that acoustic exposure found in some aquaculture settings could cause stress responses and auditory damage to peled and, potentially, other commercially important species. Reducing sound levels in fish rearing facilities could contribute to the formation of effective aquaculture practices that mitigate noise-induced stress in fishes.


Assuntos
Células Ciliadas Auditivas , Ruído , Animais , Peixes , Federação Russa
3.
Exp Dermatol ; 28(7): 795-800, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30977151

RESUMO

Melanoma is the deadliest form of skin cancer, partially due to its inherent resistance to therapy. Here, we test in live larvae the hypothesis that mature melanosomes contribute to resistance to chemotherapeutic drug, cisplatin, via drug sequestration. We also compare three melanosome biogenesis proteins-microphthalmia-associated transcription factor (Mitfa), vacuolar protein sorting 11 (Vps11) and oculocutaneous albinism 2 (Oca2) to determine their respective contributions to chemoresistance. Melanocytes in zebrafish larvae harbouring loss-of-function mutations in the mitfa, vps11 or oca2 genes are more sensitive to cisplatin damage than wild-type larvae. As a comparison, we examined sensory hair cells of the lateral line, which are sensitive to cisplatin. Hair cells in oca2 and mitfa mutants do not show increased cisplatin sensitivity when compared to wild-type larvae, suggesting the increase in cisplatin sensitivity could be melanocyte specific. However, hair cells in vps11 mutants are more sensitive to cisplatin than their wild-type counterparts, suggesting that this mutation increases cisplatin susceptibility in multiple cell types. This is the first in vivo study to show an increase in chemotherapeutic drug sensitivity when melanosome maturation mutations are present. The proteins tested, especially Oca2, represent novel drug targets for increasing the efficiency of melanoma chemotherapy treatment.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Melanócitos/citologia , Melanossomas/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Fator de Transcrição Associado à Microftalmia/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Modelos Animais de Doenças , Hibridização In Situ , Mutação , Peixe-Zebra
4.
Adv Exp Med Biol ; 877: 3-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26515307

RESUMO

Biologist Dr. Arthur Popper's career spans decades, from his early work on comparative inner ear morphology in fishes to his recent interest in how underwater noise impacts aquatic vertebrates. Along the way Dr. Popper's research subjects span at least 19 vertebrate taxa, from lamprey to lungfish to humans, and he's had a profound influence in the field of fish bioacoustics. This brief biography describes some of Dr. Popper's many contributions to fish hearing research and highlights both some of his major discoveries and some of the biological mysteries he has yet to solve.


Assuntos
Comunicação Animal , Ciências do Comportamento/história , Peixes/fisiologia , Audição/fisiologia , Acústica , Animais , Peixes/classificação , História do Século XX , História do Século XXI , Estados Unidos
5.
Adv Exp Med Biol ; 877: 419-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26515324

RESUMO

Hair cell-driven mechanosensory systems are crucial for successful execution of a number of behaviors in fishes, and have emerged as good models for exploring questions relevant to human hearing. This review focuses on ototoxic effects in the inner ear and lateral line system of fishes. We specifically examine studies where chemical ototoxins such as aminoglycoside antibiotics have been employed as tools to disable the lateral line. Lateral line ablation results in alterations to feeding behavior and orientation to water current in a variety of species. However, neither behavior is abolished in the presence of additional sensory cues, supporting the hypothesis that many fish behaviors are driven by multisensory integration. Within biomedical research, the larval zebrafish lateral line has become an important model system for understanding signaling mechanisms that contribute to hair cell death and for developing novel pharmacological therapies that protect hair cells from ototoxic damage. Furthermore, given that fishes robustly regenerate damaged hair cells, ototoxin studies in fishes have broadened our understanding of the molecular and genetic events in an innately regenerative system, offering potential targets for mammalian hair cell regeneration. Collectively, studies of fish mechanosensory systems have yielded insight into fish behavior and in mechanisms of hair cell death, protection, and regeneration.


Assuntos
Orelha Interna/fisiopatologia , Peixes/fisiologia , Sistema da Linha Lateral/efeitos dos fármacos , Sistema da Linha Lateral/fisiopatologia , Peixe-Zebra/fisiologia , Aminoglicosídeos/toxicidade , Animais , Antibacterianos/toxicidade , Orelha Interna/efeitos dos fármacos , Orelha Interna/patologia , Peixes/classificação , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/fisiologia , Humanos , Larva/efeitos dos fármacos , Larva/fisiologia , Sistema da Linha Lateral/patologia
6.
Adv Exp Med Biol ; 875: 117-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26610951

RESUMO

This paper reviews recent studies on the effects of hatchery rearing on the auditory and lateral line systems of salmonid fishes. Major conclusions are that (1) hatchery-reared juveniles exhibit abnormal lateral line morphology (relative to wild-origin conspecifics), suggesting that the hatchery environment affects lateral line structure, perhaps due to differences in the hydrodynamic conditions of hatcheries versus natural rearing environments, and (2) hatchery-reared salmonids have a high proportion of abnormal otoliths, a condition associated with reduced auditory sensitivity and suggestive of inner ear dysfunction.


Assuntos
Pesqueiros , Sistema da Linha Lateral/anatomia & histologia , Sistema da Linha Lateral/fisiologia , Salmonidae/crescimento & desenvolvimento , Animais , Exposição Ambiental , Ruído , Espectrografia do Som
7.
J Neurosci ; 33(17): 7513-25, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616556

RESUMO

Intracellular Ca(2+) is a key regulator of life or death decisions in cultured neurons and sensory cells. The role of Ca(2+) in these processes is less clear in vivo, as the location of these cells often impedes visualization of intracellular Ca(2+) dynamics. We generated transgenic zebrafish lines that express the genetically encoded Ca(2+) indicator GCaMP in mechanosensory hair cells of the lateral line. These lines allow us to monitor intracellular Ca(2+) dynamics in real time during aminoglycoside-induced hair cell death. After exposure of live larvae to aminoglycosides, dying hair cells undergo a transient increase in intracellular Ca(2+) that occurs shortly after mitochondrial membrane potential collapse. Inhibition of intracellular Ca(2+) elevation through either caged chelators or pharmacological inhibitors of Ca(2+) effectors mitigates toxic effects of aminoglycoside exposure. Conversely, artificial elevation of intracellular Ca(2+) by caged Ca(2+) release agents sensitizes hair cells to the toxic effects of aminoglycosides. These data suggest that alterations in intracellular Ca(2+) homeostasis play an essential role in aminoglycoside-induced hair cell death, and indicate several potential therapeutic targets to stem ototoxicity.


Assuntos
Aminoglicosídeos/toxicidade , Cálcio/fisiologia , Células Ciliadas Vestibulares/fisiologia , Líquido Intracelular/fisiologia , Mecanorreceptores/fisiologia , Animais , Animais Geneticamente Modificados , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Citoplasma/efeitos dos fármacos , Citoplasma/fisiologia , Feminino , Células Ciliadas Vestibulares/efeitos dos fármacos , Líquido Intracelular/efeitos dos fármacos , Sistema da Linha Lateral/efeitos dos fármacos , Sistema da Linha Lateral/fisiologia , Masculino , Mecanorreceptores/efeitos dos fármacos , Peixe-Zebra
8.
J Neurosci ; 33(10): 4405-14, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23467357

RESUMO

Cisplatin, one of the most commonly used anticancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analog of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Sistema da Linha Lateral/citologia , Mecanorreceptores/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Cálcio/metabolismo , Contagem de Células/métodos , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Ácido Egtázico/farmacologia , Embrião não Mamífero , Feminino , Corantes Fluorescentes , Proteínas de Fluorescência Verde/genética , Células Ciliadas Auditivas/metabolismo , Larva , Sistema da Linha Lateral/efeitos dos fármacos , Masculino , Microscopia de Fluorescência , Miosina VIIa , Miosinas/metabolismo , Quinina/farmacologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
9.
J Exp Biol ; 217(Pt 12): 2078-88, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24675557

RESUMO

We investigated the roles of the swim bladder and the lateral line system in sound localization behavior by the plainfin midshipman fish (Porichthys notatus). Reproductive female midshipman underwent either surgical deflation of the swim bladder or cryoablation of the lateral line and were then tested in a monopolar sound source localization task. Fish with nominally 'deflated' swim bladders performed similar to sham-deflated controls; however, post-experiment evaluation of swim bladder deflation revealed that a majority of 'deflated' fish (88%, seven of the eight fish) that exhibited positive phonotaxis had partially inflated swim bladders. In total, 95% (21/22) of fish that localized the source had at least partially inflated swim bladders, indicating that pressure reception is likely required for sound source localization. In lateral line experiments, no difference was observed in the proportion of females exhibiting positive phonotaxis with ablated (37%) versus sham-ablated (47%) lateral line systems. These data suggest that the lateral line system is likely not required for sound source localization, although this system may be important for fine-tuning the approach to the sound source. We found that midshipman can solve the 180 deg ambiguity of source direction in the shallow water of our test tank, which is similar to their nesting environment. We also found that the potential directional cues (phase relationship between pressure and particle motion) in shallow water differs from a theoretical free-field. Therefore, the general question of how fish use acoustic pressure cues to solve the 180 deg ambiguity of source direction from the particle motion vector remains unresolved.


Assuntos
Sacos Aéreos/fisiologia , Batracoidiformes/fisiologia , Sistema da Linha Lateral/fisiologia , Localização de Som , Animais , California , Sinais (Psicologia) , Feminino , Movimento (Física) , Pressão
10.
Zebrafish ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39075066

RESUMO

Increasing carbon dioxide levels associated with climate change will likely have a devastating effect on aquatic ecosystems. Aquatic environments sequester carbon dioxide, resulting in acidic conditions that can negatively affect fish development. Increasing climate change impacts in the coming decades will have an outsized effect on younger generations. Therefore, our research had two interconnected goals: 1) understand how aquatic acidification affects the development of zebrafish, and 2) support a high school scientist's ability to address environmental questions of increasing importance to her generation. Working with teachers and other mentors, the first author designed and conducted the research, first in her high school, then in a university research laboratory. Zebrafish embryos were reared in varying pH conditions (6.7-8.2) for up to 7 days. We assessed fish length and development of the inner ear, including the otoliths; structures that depend on calcium carbonate for proper development. Although pH did not affect fish length, fish reared in pH 7.75 had smaller anterior otoliths, showing that pH can impact zebrafish ear development. Furthermore, we demonstrate how zebrafish may be used for high school students to pursue open-ended questions using different levels of available resources.

11.
Sci Rep ; 14(1): 6670, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509148

RESUMO

Age-related hearing loss (ARHL) is a debilitating disorder for millions worldwide. While there are multiple underlying causes of ARHL, one common factor is loss of sensory hair cells. In mammals, new hair cells are not produced postnatally and do not regenerate after damage, leading to permanent hearing impairment. By contrast, fish produce hair cells throughout life and robustly regenerate these cells after toxic insult. Despite these regenerative abilities, zebrafish show features of ARHL. Here, we show that aged zebrafish of both sexes exhibited significant hair cell loss and decreased cell proliferation in all inner ear epithelia (saccule, lagena, utricle). Ears from aged zebrafish had increased expression of pro-inflammatory genes and significantly more macrophages than ears from young adult animals. Aged zebrafish also had fewer lateral line hair cells and less cell proliferation than young animals, although lateral line hair cells still robustly regenerated following damage. Unlike zebrafish, African turquoise killifish (an emerging aging model) only showed hair cell loss in the saccule of aged males, but both sexes exhibit age-related changes in the lateral line. Our work demonstrates that zebrafish exhibit key features of auditory aging, including hair cell loss and increased inflammation. Further, our finding that aged zebrafish have fewer lateral line hair cells yet retain regenerative capacity, suggests a decoupling of homeostatic hair cell addition from regeneration following acute trauma. Finally, zebrafish and killifish show species-specific strategies for lateral line homeostasis that may inform further comparative research on aging in mechanosensory systems.


Assuntos
Orelha Interna , Peixes Listrados , Sistema da Linha Lateral , Perciformes , Animais , Masculino , Feminino , Peixe-Zebra/genética , Células Ciliadas Auditivas/metabolismo , Regeneração/genética , Mamíferos
12.
J Neurosci ; 32(4): 1366-76, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22279221

RESUMO

The plainfin midshipman fish, Porichthys notatus, is a seasonal breeding teleost fish for which vocal-acoustic communication is essential for its reproductive success. Female midshipman use the saccule as the primary end organ for hearing to detect and locate "singing" males that produce multiharmonic advertisement calls during the summer breeding season. Previous work has shown that female auditory sensitivity changes seasonally with reproductive state; summer reproductive females become better suited than winter nonreproductive females to detect and encode the dominant higher harmonic components in the male's advertisement call, which are potentially critical for mate selection and localization. Here, we test the hypothesis that these seasonal changes in female auditory sensitivity are concurrent with seasonal increases in saccular hair cell receptors. We show that there is increased hair cell density in reproductive females and that this increase is not dependent on body size since similar changes in hair cell density were not found in the other inner ear end organs. We also observed an increase in the number of small, potentially immature saccular hair bundles in reproductive females. The seasonal increase in saccular hair cell density and smaller hair bundles in reproductive females was paralleled by a dramatic increase in the magnitude of the evoked saccular potentials and a corresponding decrease in the auditory thresholds recorded from the saccule. This demonstration of correlated seasonal plasticity of hair cell addition and auditory sensitivity may in part facilitate the adaptive auditory plasticity of this species to enhance mate detection and localization during breeding.


Assuntos
Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Células Ciliadas Auditivas/fisiologia , Reprodução/fisiologia , Sáculo e Utrículo/fisiologia , Vocalização Animal/fisiologia , Animais , Batracoidiformes , Morte Celular/fisiologia , Feminino , Células Ciliadas Auditivas/ultraestrutura , Masculino , Sáculo e Utrículo/ultraestrutura
13.
Apoptosis ; 18(4): 393-408, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23413197

RESUMO

Programmed cell death (PCD) is an important process in development and disease, as it allows the body to rid itself of unwanted or damaged cells. However, PCD pathways can also be activated in otherwise healthy cells. One such case occurs in sensory hair cells of the inner ear following exposure to ototoxic drugs, resulting in hearing loss and/or balance disorders. The intracellular pathways that determine if hair cells die or survive following this or other ototoxic challenges are incompletely understood. We use the larval zebrafish lateral line, an external hair cell-bearing sensory system, as a platform for profiling cell death pathways activated in response to ototoxic stimuli. In this report the importance of each pathway was assessed by screening a custom cell death inhibitor library for instances when pathway inhibition protected hair cells from the aminoglycosides neomycin or gentamicin, or the chemotherapy agent cisplatin. This screen revealed that each ototoxin likely activated a distinct subset of possible cell death pathways. For example, the proteasome inhibitor Z-LLF-CHO protected hair cells from either aminoglycoside or from cisplatin, while D-methionine, an antioxidant, protected hair cells from gentamicin or cisplatin but not from neomycin toxicity. The calpain inhibitor leupeptin primarily protected hair cells from neomycin, as did a Bax channel blocker. Neither caspase inhibition nor protein synthesis inhibition altered the progression of hair cell death. Taken together, these results suggest that ototoxin-treated hair cells die via multiple processes that form an interactive network of cell death signaling cascades.


Assuntos
Morte Celular , Gentamicinas/farmacologia , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/metabolismo , Sistema da Linha Lateral/efeitos dos fármacos , Neomicina/farmacologia , Animais , Antioxidantes/farmacologia , Benzamidinas , Calpaína/antagonistas & inibidores , Inibidores de Caspase/farmacologia , Células Cultivadas , Cisplatino/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Guanidinas/farmacologia , Sistema da Linha Lateral/citologia , Leupeptinas/farmacologia , Metionina/farmacologia , Oligopeptídeos/farmacologia , Inibidores de Proteases/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
14.
Artigo em Inglês | MEDLINE | ID: mdl-24187569

RESUMO

The majority of hearing loss is caused by the permanent loss of inner ear hair cells. The identification of drugs that modulate the susceptibility to hair cell loss or spur their regeneration is often hampered by the difficulties of assaying for such complex phenomena in mammalian models. The zebrafish has emerged as a powerful animal model for chemical screening in many contexts. Several characteristics of the zebrafish, such as its small size and external location of sensory hair cells, uniquely position it as an ideal model organism for the study of hair cell toxicity, protection, and regeneration. We have used this model to screen for drugs that affect each of these aspects of hair cell biology and have identified compounds that affect each of these processes. The identification of such drugs and drug-like compounds holds promise in the future ability to stem hearing loss in the human population.

15.
Hear Res ; 432: 108754, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37054531

RESUMO

Historically, diverse organisms have contributed to our understanding of auditory function. In recent years, the laboratory mouse has become the prevailing non-human model in auditory research, particularly for biomedical studies. There are many questions in auditory research for which the mouse is the most appropriate (or the only) model system available. But mice cannot provide answers for all auditory problems of basic and applied importance, nor can any single model system provide a synthetic understanding of the diverse solutions that have evolved to facilitate effective detection and use of acoustic information. In this review, spurred by trends in funding and publishing and inspired by parallel observations in other domains of neuroscience, we highlight a few examples of the profound impact and lasting benefits of comparative and basic organismal research in the auditory system. We begin with the serendipitous discovery of hair cell regeneration in non-mammalian vertebrates, a finding that has fueled an ongoing search for pathways to hearing restoration in humans. We then turn to the problem of sound source localization - a fundamental task that most auditory systems have been compelled to solve despite large variation in the magnitudes and kinds of spatial acoustic cues available, begetting varied direction-detecting mechanisms. Finally, we consider the power of work in highly specialized organisms to reveal exceptional solutions to sensory problems - and the diverse returns of deep neuroethological inquiry - via the example of echolocating bats. Throughout, we consider how discoveries made possible by comparative and curiosity-driven organismal research have driven fundamental scientific, biomedical, and technological advances in the auditory field.


Assuntos
Quirópteros , Dípteros , Ecolocação , Localização de Som , Humanos , Animais , Camundongos , Audição , Células Ciliadas Auditivas , Peixes
16.
Hear Res ; 434: 108786, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37192594

RESUMO

Loss of sensory hair cells from exposure to certain licit drugs, such as aminoglycoside antibiotics, can result in permanent hearing damage. Exogenous application of the neurotrophic molecule hepatocyte growth factor (HGF) promotes neuronal cell survival in a variety of contexts, including protecting hair cells from aminoglycoside ototoxicity. HGF itself is not an ideal therapeutic due to a short half-life and limited blood-brain barrier permeability. MM-201 is a chemically stable, blood-brain barrier permeable, synthetic HGF mimetic that serves as a functional ligand to activate the HGF receptor and its downstream signaling cascade. We previously demonstrated that MM-201 robustly protects zebrafish lateral line hair cells from aminoglycoside ototoxicity. Here, we examined the ability of MM-201 to protect mammalian sensory hair cells from aminoglycoside damage to further evaluate MM-201's clinical potential. We found that MM-201 exhibited dose-dependent protection from neomycin and gentamicin ototoxicity in mature mouse utricular explants. MM-201's protection was reduced following inhibition of mTOR, a downstream target of HGF receptor activation, implicating the activation of endogenous intracellular substrates by MM-201 as critical for the observed protection. We then asked if MM-201 altered the bactericidal properties of aminoglycosides. Using either plate or liquid growth assays we found that MM-201 did not alter the bactericidal efficacy of aminoglycoside antibiotics at therapeutically relevant concentrations. We therefore assessed the protective capacity of MM-201 in an in vivo mouse model of kanamycin ototoxicity. In contrast to our in vitro data, MM-201 did not attenuate kanamycin ototoxicity in vivo. Further, we found that MM-201 was ototoxic to mice across the dose range tested here. These data suggest species- and tissue-specific differences in otoprotective capacity. Next generation HGF mimetics are in clinical trials for neurodegenerative diseases and show excellent safety profiles, but neither preclinical studies nor clinical trials have examined hearing loss as a potential consequence of pharmaceutical HGF activation. Further research is needed to determine the consequences of systemic MM-201 application on the auditory system.


Assuntos
Aminoglicosídeos , Ototoxicidade , Camundongos , Animais , Aminoglicosídeos/toxicidade , Proteínas Proto-Oncogênicas c-met/farmacologia , Peixe-Zebra , Fator de Crescimento de Hepatócito/farmacologia , Antibacterianos/toxicidade , Morte Celular , Canamicina/toxicidade , Mamíferos
17.
Front Cell Neurosci ; 16: 941031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090793

RESUMO

The biomedical community is rapidly developing COVID-19 drugs to bring much-need therapies to market, with over 900 drugs and drug combinations currently in clinical trials. While this pace of drug development is necessary, the risk of producing therapies with significant side-effects is also increased. One likely side-effect of some COVID-19 drugs is hearing loss, yet hearing is not assessed during preclinical development or clinical trials. We used the zebrafish lateral line, an established model for drug-induced sensory hair cell damage, to assess the ototoxic potential of seven drugs in clinical trials for treatment of COVID-19. We found that ivermectin, lopinavir, imatinib, and ritonavir were significantly toxic to lateral line hair cells. By contrast, the approved COVID-19 therapies dexamethasone and remdesivir did not cause damage. We also did not observe damage from the antibiotic azithromycin. Neither lopinavir nor ritonavir altered the number of pre-synaptic ribbons per surviving hair cell, while there was an increase in ribbons following imatinib or ivermectin exposure. Damage from lopinavir, imatinib, and ivermectin was specific to hair cells, with no overall cytotoxicity noted following TUNEL labeling. Ritonavir may be generally cytotoxic, as determined by an increase in the number of TUNEL-positive non-hair cells following ritonavir exposure. Pharmacological inhibition of the mechanotransduction (MET) channel attenuated damage caused by lopinavir and ritonavir but did not alter imatinib or ivermectin toxicity. These results suggest that lopinavir and ritonavir may enter hair cells through the MET channel, similar to known ototoxins such as aminoglycoside antibiotics. Finally, we asked if ivermectin was ototoxic to rats in vivo. While ivermectin is not recommended by the FDA for treating COVID-19, many people have chosen to take ivermectin without a doctor's guidance, often with serious side-effects. Rats received daily subcutaneous injections for 10 days with a clinically relevant ivermectin dose (0.2 mg/kg). In contrast to our zebrafish assays, ivermectin did not cause ototoxicity in rats. Our research suggests that some drugs in clinical trials for COVID-19 may be ototoxic. This work can help identify drugs with the fewest side-effects and determine which therapies warrant audiometric monitoring.

18.
J Exp Biol ; 214(Pt 13): 2248-57, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21653819

RESUMO

Thyroid hormones (THs) play a vital role in vertebrate neural development, and, together with the beta isoform of the thyroid hormone receptor (TRß), the development and differentiation of cone photoreceptors in the vertebrate retina. Rainbow trout undergo a natural process of cone cell degeneration during development and this change in photoreceptor distribution is regulated by thyroxine (T4; a thyroid hormone). In an effort to further understand the role of T4 in photoreceptor ontogeny and later developmental changes in photoreceptor subtype distribution, the influence of enhanced in ovo T4 content on the onset of opsin expression and cone development was examined. Juvenile trout reared from the initial in ovo-treated embryos were challenged with exogenous T4 at the parr stage of development to determine if altered embryonic exposure to yolk THs would affect later T4-induced short-wavelength-sensitive (SWS1) opsin transcript downregulation and ultraviolet-sensitive (UVS) cone loss. In ovo TH manipulation led to upregulation of both SWS1 and long-wavelength-sensitive (LWS) opsin transcripts in the pre-hatch rainbow trout retina and to changes in the relative expression of TRß. After 7 days of exposure to T4, juveniles that were also treated with T4 in ovo had greatly reduced SWS1 expression levels and premature loss of UVS cones relative to T4-treated juveniles raised from untreated eggs. These results suggest that changes in egg TH levels can have significant consequences much later in development, particularly in the retina.


Assuntos
Oncorhynchus mykiss/metabolismo , Tiroxina/metabolismo , Animais , Regulação para Baixo , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Exposição Materna , Oncorhynchus mykiss/embriologia , Opsinas/biossíntese , Células Fotorreceptoras de Vertebrados/fisiologia , Isoformas de Proteínas , Retina/embriologia , Receptores beta dos Hormônios Tireóideos/metabolismo
19.
PLoS Genet ; 4(2): e1000020, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18454195

RESUMO

Inner ear sensory hair cell death is observed in the majority of hearing and balance disorders, affecting the health of more than 600 million people worldwide. While normal aging is the single greatest contributor, exposure to environmental toxins and therapeutic drugs such as aminoglycoside antibiotics and antineoplastic agents are significant contributors. Genetic variation contributes markedly to differences in normal disease progression during aging and in susceptibility to ototoxic agents. Using the lateral line system of larval zebrafish, we developed an in vivo drug toxicity interaction screen to uncover genetic modulators of antibiotic-induced hair cell death and to identify compounds that confer protection. We have identified 5 mutations that modulate aminoglycoside susceptibility. Further characterization and identification of one protective mutant, sentinel (snl), revealed a novel conserved vertebrate gene. A similar screen identified a new class of drug-like small molecules, benzothiophene carboxamides, that prevent aminoglycoside-induced hair cell death in zebrafish and in mammals. Testing for interaction with the sentinel mutation suggests that the gene and compounds may operate in different pathways. The combination of chemical screening with traditional genetic approaches is a new strategy for identifying drugs and drug targets to attenuate hearing and balance disorders.


Assuntos
Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Internas/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética , Aminoglicosídeos/antagonistas & inibidores , Aminoglicosídeos/toxicidade , Animais , Sequência de Bases , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Cisplatino/toxicidade , Códon de Terminação/genética , Primers do DNA/genética , DNA Complementar/genética , Avaliação Pré-Clínica de Medicamentos , Epistasia Genética , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Perda Auditiva/etiologia , Perda Auditiva/genética , Perda Auditiva/prevenção & controle , Humanos , Camundongos , Neomicina/antagonistas & inibidores , Neomicina/toxicidade , Mutação Puntual , Sáculo e Utrículo/efeitos dos fármacos , Sáculo e Utrículo/patologia , Tiofenos/química , Tiofenos/farmacologia , Peixe-Zebra/fisiologia
20.
Front Neurol ; 12: 725566, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489859

RESUMO

Over 100 drugs and chemicals are associated with permanent hearing loss, tinnitus, and vestibular deficits, collectively known as ototoxicity. The ototoxic potential of drugs is rarely assessed in pre-clinical drug development or during clinical trials, so this debilitating side-effect is often discovered as patients begin to report hearing loss. Furthermore, drug-induced ototoxicity in adults, and particularly in elderly patients, may go unrecognized due to hearing loss from a variety of etiologies because of a lack of baseline assessments immediately prior to novel therapeutic treatment. During the current pandemic, there is an intense effort to identify new drugs or repurpose FDA-approved drugs to treat COVID-19. Several potential COVID-19 therapeutics are known ototoxins, including chloroquine (CQ) and lopinavir-ritonavir, demonstrating the necessity to identify ototoxic potential in existing and novel medicines. Furthermore, several factors are emerging as potentiators of ototoxicity, such as inflammation (a hallmark of COVID-19), genetic polymorphisms, and ototoxic synergy with co-therapeutics, increasing the necessity to evaluate a drug's potential to induce ototoxicity under varying conditions. Here, we review the potential of COVID-19 therapies to induce ototoxicity and factors that may compound their ototoxic effects. We then discuss two models for rapidly detecting the potential for ototoxicity: mammalian auditory cell lines and the larval zebrafish lateral line. These models offer considerable value for pre-clinical drug development, including development of COVID-19 therapies. Finally, we show the validity of in silico screening for ototoxic potential using a computational model that compares structural similarity of compounds of interest with a database of known ototoxins and non-ototoxins. Preclinical screening at in silico, in vitro, and in vivo levels can provide an earlier indication of the potential for ototoxicity and identify the subset of candidate therapeutics for treating COVID-19 that need to be monitored for ototoxicity as for other widely-used clinical therapeutics, like aminoglycosides and cisplatin.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa