Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 27(9): 1192-1205, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056054

RESUMO

Chronic kidney diseases affect a substantial percentage of the adult population worldwide. This observation emphasizes the need for novel insights into the molecular mechanisms that control the onset and progression of renal diseases. Recent advances in genomics have uncovered a previously unanticipated link between the non-coding genome and human kidney diseases. Here we screened and analysed long non-coding RNAs (lncRNAs) previously identified in mouse kidneys by genome-wide transcriptomic analysis, for conservation in humans and differential expression in renal tissue from healthy and diseased individuals. Our data suggest that LINC01187 is strongly down-regulated in human kidney tissues of patients with diabetic nephropathy and rapidly progressive glomerulonephritis, as well as in murine models of kidney diseases, including unilateral ureteral obstruction, nephrotoxic serum-induced glomerulonephritis and ischemia/reperfusion. Interestingly, LINC01187 overexpression in human kidney cells in vitro inhibits cell death indicating an anti-apoptotic function. Collectively, these data suggest a negative association of LINC01187 expression with renal diseases implying a potential protective role.


Assuntos
Nefropatias Diabéticas , Glomerulonefrite , RNA Longo não Codificante , Animais , Humanos , Camundongos , Nefropatias Diabéticas/metabolismo , Regulação para Baixo/genética , Glomerulonefrite/metabolismo , Rim/metabolismo , RNA Longo não Codificante/metabolismo
2.
Nephrol Dial Transplant ; 38(10): 2276-2288, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37096392

RESUMO

BACKGROUND: The roles of hypoxia and hypoxia inducible factor (HIF) during chronic kidney disease (CKD) are much debated. Interventional studies with HIF-α activation in rodents have yielded contradictory results. The HIF pathway is regulated by prolyl and asparaginyl hydroxylases. While prolyl hydroxylase inhibition is a well-known method to stabilize HIF-α, little is known about the effect asparaginyl hydroxylase factor inhibiting HIF (FIH). METHODS: We used a model of progressive proteinuric CKD and a model of obstructive nephropathy with unilateral fibrosis. In these models we assessed hypoxia with pimonidazole and vascularization with three-dimensional micro-computed tomography imaging. We analysed a database of 217 CKD biopsies from stage 1 to 5 and we randomly collected 15 CKD biopsies of various severity degrees to assess FIH expression. Finally, we modulated FIH activity in vitro and in vivo using a pharmacologic approach to assess its relevance in CKD. RESULTS: In our model of proteinuric CKD, we show that early CKD stages are not characterized by hypoxia or HIF activation. At late CKD stages, some areas of hypoxia are observed, but these are not colocalizing with fibrosis. In mice and in humans, we observed a downregulation of the HIF pathway, together with an increased FIH expression in CKD, according to its severity. Modulating FIH in vitro affects cellular metabolism, as described previously. In vivo, pharmacologic FIH inhibition increases the glomerular filtration rate of control and CKD animals and is associated with decreased development of fibrosis. CONCLUSIONS: The causative role of hypoxia and HIF activation in CKD progression is questioned. A pharmacological approach of FIH downregulation seems promising in proteinuric kidney disease.


Assuntos
Hipóxia , Oxigenases de Função Mista , Humanos , Animais , Camundongos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Microtomografia por Raio-X , Proteínas Repressoras/genética , Regulação para Baixo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
3.
J Am Soc Nephrol ; 33(4): 810-827, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35273087

RESUMO

INTRODUCTION: CKD is associated with alterations of tubular function. Renal gluconeogenesis is responsible for 40% of systemic gluconeogenesis during fasting, but how and why CKD affects this process and the repercussions of such regulation are unknown. METHODS: We used data on the renal gluconeogenic pathway from more than 200 renal biopsies performed on CKD patients and from 43 kidney allograft patients, and studied three mouse models, of proteinuric CKD (POD-ATTAC), of ischemic CKD, and of unilateral urinary tract obstruction. We analyzed a cohort of patients who benefitted from renal catheterization and a retrospective cohort of patients hospitalized in the intensive care unit. RESULTS: Renal biopsies of CKD and kidney allograft patients revealed a stage-dependent decrease in the renal gluconeogenic pathway. Two animal models of CKD and one model of kidney fibrosis confirm gluconeogenic downregulation in injured proximal tubule cells. This shift resulted in an alteration of renal glucose production and lactate clearance during an exogenous lactate load. The isolated perfused kidney technique in animal models and renal venous catheterization in CKD patients confirmed decreased renal glucose production and lactate clearance. In CKD patients hospitalized in the intensive care unit, systemic alterations of glucose and lactate levels were more prevalent and associated with increased mortality and a worse renal prognosis at follow-up. Decreased expression of the gluconeogenesis pathway and its regulators predicted faster histologic progression of kidney disease in kidney allograft biopsies. CONCLUSION: Renal gluconeogenic function is impaired in CKD. Altered renal gluconeogenesis leads to systemic metabolic changes with a decrease in glucose and increase in lactate level, and is associated with a worse renal prognosis.


Assuntos
Gluconeogênese , Insuficiência Renal Crônica , Animais , Gluconeogênese/fisiologia , Humanos , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Camundongos , Insuficiência Renal Crônica/metabolismo , Estudos Retrospectivos
4.
FASEB J ; 35(5): e21560, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33860543

RESUMO

Glomerular hypertension induces mechanical load to podocytes, often resulting in podocyte detachment and the development of glomerulosclerosis. Although it is well known that podocytes are mechanosensitive, the mechanosensors and mechanotransducers are still unknown. Since filamin A, an actin-binding protein, is already described to be a mechanosensor and mechanotransducer, we hypothesized that filamins could be important for the outside-in signaling as well as the actin cytoskeleton of podocytes under mechanical stress. In this study, we demonstrate that filamin A is the main isoform of the filamin family that is expressed in cultured podocytes. Together with filamin B, filamin A was significantly up-regulated during mechanical stretch (3 days, 0.5 Hz, and 5% extension). To study the role of filamin A in cultured podocytes under mechanical stress, filamin A was knocked down (Flna KD) by specific siRNA. Additionally, we established a filamin A knockout podocyte cell line (Flna KO) by CRISPR/Cas9. Knockdown and knockout of filamin A influenced the expression of synaptopodin, a podocyte-specific protein, focal adhesions as well as the morphology of the actin cytoskeleton. Moreover, the cell motility of Flna KO podocytes was significantly increased. Since the knockout of filamin A has had no effect on cell adhesion of podocytes during mechanical stress, we simultaneously knocked down the expression of filamin A and B. Thereby, we observed a significant loss of podocytes during mechanical stress indicating a compensatory mechanism. Analyzing hypertensive mice kidneys as well as biopsies of patients suffering from diabetic nephropathy, we found an up-regulation of filamin A in podocytes in contrast to the control. In summary, filamin A and B mediate matrix-actin cytoskeleton interactions which are essential for the adaptation of cultured podocyte to mechanical stress.


Assuntos
Citoesqueleto de Actina/metabolismo , Nefropatias Diabéticas/patologia , Filaminas/metabolismo , Adesões Focais/patologia , Glomérulos Renais/patologia , Podócitos/patologia , Estresse Mecânico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Adesão Celular , Movimento Celular , Nefropatias Diabéticas/metabolismo , Adesões Focais/metabolismo , Humanos , Glomérulos Renais/metabolismo , Camundongos , Pessoa de Meia-Idade , Podócitos/metabolismo , Estudos Retrospectivos , Transdução de Sinais
5.
J Am Soc Nephrol ; 32(2): 357-374, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33380522

RESUMO

BACKGROUND: Injury to kidney podocytes often results in chronic glomerular disease and consecutive nephron malfunction. For most glomerular diseases, targeted therapies are lacking. Thus, it is important to identify novel signaling pathways contributing to glomerular disease. Neurotrophic tyrosine kinase receptor 3 (TrkC) is expressed in podocytes and the protein transmits signals to the podocyte actin cytoskeleton. METHODS: Nephron-specific TrkC knockout (TrkC-KO) and nephron-specific TrkC-overexpressing (TrkC-OE) mice were generated to dissect the role of TrkC in nephron development and maintenance. RESULTS: Both TrkC-KO and TrkC-OE mice exhibited enlarged glomeruli, mesangial proliferation, basement membrane thickening, albuminuria, podocyte loss, and aspects of FSGS during aging. Igf1 receptor (Igf1R)-associated gene expression was dysregulated in TrkC-KO mouse glomeruli. Phosphoproteins associated with insulin, erb-b2 receptor tyrosine kinase (Erbb), and Toll-like receptor signaling were enriched in lysates of podocytes treated with the TrkC ligand neurotrophin-3 (Nt-3). Activation of TrkC by Nt-3 resulted in phosphorylation of the Igf1R on activating tyrosine residues in podocytes. Igf1R phosphorylation was increased in TrkC-OE mouse kidneys while it was decreased in TrkC-KO kidneys. Furthermore, TrkC expression was elevated in glomerular tissue of patients with diabetic kidney disease compared with control glomerular tissue. CONCLUSIONS: Our results show that TrkC is essential for maintaining glomerular integrity. Furthermore, TrkC modulates Igf-related signaling in podocytes.


Assuntos
Nefropatias/metabolismo , Néfrons/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor trkC/metabolismo , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Humanos , Nefropatias/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/metabolismo , Podócitos/metabolismo , Transdução de Sinais/fisiologia
6.
Nephrol Dial Transplant ; 36(1): 60-68, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33099633

RESUMO

BACKGROUND: Nicotinamide adenine dinucleotide (NAD+) is a ubiquitous coenzyme involved in electron transport and a co-substrate for sirtuin function. NAD+ deficiency has been demonstrated in the context of acute kidney injury (AKI). METHODS: We studied the expression of key NAD+ biosynthesis enzymes in kidney biopsies from human allograft patients and patients with chronic kidney disease (CKD) at different stages. We used ischaemia-reperfusion injury (IRI) and cisplatin injection to model AKI, urinary tract obstruction [unilateral ureteral obstruction (UUO)] and tubulointerstitial fibrosis induced by proteinuria to investigate CKD in mice. We assessed the effect of nicotinamide riboside (NR) supplementation on AKI and CKD in animal models. RESULTS: RNA sequencing analysis of human kidney allograft biopsies during the reperfusion phase showed that the NAD+de novo synthesis is impaired in the immediate post-transplantation period, whereas the salvage pathway is stimulated. This decrease in de novo NAD+ synthesis was confirmed in two mouse models of IRI where NR supplementation prevented plasma urea and creatinine elevation and tubular injury. In human biopsies from CKD patients, the NAD+de novo synthesis pathway was impaired according to CKD stage, with better preservation of the salvage pathway. Similar alterations in gene expression were observed in mice with UUO or chronic proteinuric glomerular disease. NR supplementation did not prevent CKD progression, in contrast to its efficacy in AKI. CONCLUSION: Impairment of NAD+ synthesis is a hallmark of AKI and CKD. NR supplementation is beneficial in ischaemic AKI but not in CKD models.


Assuntos
Injúria Renal Aguda/patologia , Modelos Animais de Doenças , Niacinamida/análogos & derivados , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/patologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Animais , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Niacinamida/administração & dosagem , Niacinamida/deficiência , Compostos de Piridínio , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Traumatismo por Reperfusão/induzido quimicamente , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
7.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923831

RESUMO

A growing body of evidence suggests that low nephron numbers at birth can increase the risk of chronic kidney disease or hypertension later in life. Environmental stressors, such as maternal malnutrition, medication and smoking, can influence renal size at birth. Using metanephric organ cultures to model single-variable environmental conditions, models of maternal disease were evaluated for patterns of developmental impairment. While hyperthermia had limited effects on renal development, fetal iron deficiency was associated with severe impairment of renal growth and nephrogenesis with an all-proximal phenotype. Culturing kidney explants under high glucose conditions led to cellular and transcriptomic changes resembling human diabetic nephropathy. Short-term high glucose culture conditions were sufficient for long-term alterations in DNA methylation-associated epigenetic memory. Finally, the role of epigenetic modifiers in renal development was tested using a small compound library. Among the selected epigenetic inhibitors, various compounds elicited an effect on renal growth, such as HDAC (entinostat, TH39), histone demethylase (deferasirox, deferoxamine) and histone methyltransferase (cyproheptadine) inhibitors. Thus, metanephric organ cultures provide a valuable system for studying metabolic conditions and a tool for screening for epigenetic modifiers in renal development.


Assuntos
Nefropatias Diabéticas/genética , Meio Ambiente , Epigênese Genética , Glucose/toxicidade , Rim/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Metilação de DNA , Feminino , Humanos , Deficiências de Ferro , Rim/efeitos dos fármacos , Camundongos , Técnicas de Cultura de Órgãos/métodos , Gravidez , Transcriptoma
8.
FASEB J ; 33(12): 14450-14460, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31675484

RESUMO

Hypertension is one of the central causes of kidney damage. In the past it was shown that glomerular hypertension leads to morphologic changes of podocytes and effacement and is responsible for detachment of these postmitotic cells. Because we have shown that podocytes are mechanosensitive and respond to mechanical stress by reorganization of the actin cytoskeleton in vitro, we look for mechanotransducers in podocytes. In this study, we demonstrate that the extracellular matrix protein fibronectin (Fn1) might be a potential candidate. The present study shows that Fn1 is essential for the attachment of podocytes during mechanical stress. By real-time quantitative PCR as well as by liquid chromatography-mass spectrometry, we found a significant up-regulation of Fn1 caused by mechanical stretch (3 d, 0.5 Hz, and 5% extension). To study the role of Fn1 in cultured podocytes under mechanical stress, Fn1 was knocked down (Fn1 KD) by a specific small interfering RNA. Additionally, we established a Fn1 knockout (KO) podocyte cell line (Fn1 KO) by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). During mechanical stress, a significant loss of podocytes (>80%) was observed in Fn1 KD as well as Fn1 KO podocytes compared with control cells. Furthermore, Fn1 KO podocytes showed a significant down-regulation of the focal adhesion proteins talin, vinculin, and paxillin and a reduced cell spreading, indicating an important role of Fn1 in adhesion. Analyses of kidney sections from patients with diabetic nephropathy have shown a significant up-regulation of FN1 in contrast to control biopsies. In summary, we show that Fn1 plays an important role in the adaptation of podocytes to mechanical stress.-Kliewe, F., Kaling, S., Lötzsch, H., Artelt, N., Schindler, M., Rogge, H., Schröder, S., Scharf, C., Amann, K., Daniel, C., Lindenmeyer, M. T., Cohen, C. D., Endlich, K., Endlich, N. Fibronectin is up-regulated in podocytes by mechanical stress.


Assuntos
Fibronectinas/metabolismo , Podócitos/fisiologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Adesão Celular/fisiologia , Regulação para Baixo , Fibronectinas/genética , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Integrinas/genética , Integrinas/metabolismo , Glomérulos Renais/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima
9.
J Am Soc Nephrol ; 30(9): 1641-1658, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31405951

RESUMO

BACKGROUND: GATA3 is a dual-zinc finger transcription factor that regulates gene expression in many developing tissues. In the kidney, GATA3 is essential for ureteric bud branching, and mice without it fail to develop kidneys. In humans, autosomal dominant GATA3 mutations can cause renal aplasia as part of the hypoparathyroidism, renal dysplasia, deafness (HDR) syndrome that includes mesangioproliferative GN. This suggests that GATA3 may have a previously unrecognized role in glomerular development or injury. METHODS: To determine GATA3's role in glomerular development or injury, we assessed GATA3 expression in developing and mature kidneys from Gata3 heterozygous (+/-) knockout mice, as well as injured human and rodent kidneys. RESULTS: We show that GATA3 is expressed by FOXD1 lineage stromal progenitor cells, and a subset of these cells mature into mesangial cells (MCs) that continue to express GATA3 in adult kidneys. In mice, we uncover that GATA3 is essential for normal glomerular development, and mice with haploinsufficiency of Gata3 have too few MC precursors and glomerular abnormalities. Expression of GATA3 is maintained in MCs of adult kidneys and is markedly increased in rodent models of mesangioproliferative GN and in IgA nephropathy, suggesting that GATA3 plays a critical role in the maintenance of glomerular homeostasis. CONCLUSIONS: These results provide new insights on the role GATA3 plays in MC development and response to injury. It also shows that GATA3 may be a novel and robust nuclear marker for identifying MCs in tissue sections.


Assuntos
Fator de Transcrição GATA3/metabolismo , Glomerulonefrite/metabolismo , Glomérulos Renais/metabolismo , Animais , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/metabolismo , Fator de Transcrição GATA3/genética , Haploinsuficiência , Humanos , Glomérulos Renais/anormalidades , Glomérulos Renais/embriologia , Glomérulos Renais/patologia , Masculino , Células Mesangiais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Ratos , Ratos Wistar
10.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977372

RESUMO

Growth differentiation factor 15 (GDF15) is a member of the transforming growth factor-ß (TGF-ß) cytokine family and an inflammation-associated protein. Here, we investigated the role of GDF15 in murine anti-glomerular basement membrane (GBM) glomerulonephritis. Glomerulonephritis induction in mice induced systemic expression of GDF15. Moreover, we demonstrate the protective effects for GDF15, as GDF15-deficient mice exhibited increased proteinuria with an aggravated crescent formation and mesangial expansion in anti-GBM nephritis. Herein, GDF15 was required for the regulation of T-cell chemotactic chemokines in the kidney. In addition, we found the upregulation of the CXCR3 receptor in activated T-cells in GDF15-deficient mice. These data indicate that CXCL10/CXCR3-dependent-signaling promotes the infiltration of T cells into the organ during acute inflammation controlled by GDF15. Together, these results reveal a novel mechanism limiting the migration of lymphocytes to the site of inflammation during glomerulonephritis.


Assuntos
Movimento Celular/imunologia , Membrana Basal Glomerular/imunologia , Glomerulonefrite Membranosa/imunologia , Fator 15 de Diferenciação de Crescimento/imunologia , Proteinúria/imunologia , Linfócitos T/imunologia , Animais , Movimento Celular/genética , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Membrana Basal Glomerular/patologia , Glomerulonefrite Membranosa/genética , Glomerulonefrite Membranosa/patologia , Fator 15 de Diferenciação de Crescimento/genética , Camundongos , Camundongos Knockout , Proteinúria/genética , Proteinúria/patologia , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Linfócitos T/patologia
11.
J Pathol ; 246(4): 485-496, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30125361

RESUMO

Planar cell polarity (PCP) pathways control the orientation and alignment of epithelial cells within tissues. Van Gogh-like 2 (Vangl2) is a key PCP protein that is required for the normal differentiation of kidney glomeruli and tubules. Vangl2 has also been implicated in modifying the course of acquired glomerular disease, and here, we further explored how Vangl2 impacts on glomerular pathobiology in this context. Targeted genetic deletion of Vangl2 in mouse glomerular epithelial podocytes enhanced the severity of not only irreversible accelerated nephrotoxic nephritis but also lipopolysaccharide-induced reversible glomerular damage. In each proteinuric model, genetic deletion of Vangl2 in podocytes was associated with an increased ratio of active-MMP9 to inactive MMP9, an enzyme involved in tissue remodelling. In addition, by interrogating microarray data from two cohorts of renal patients, we report increased VANGL2 transcript levels in the glomeruli of individuals with focal segmental glomerulosclerosis, suggesting that the molecule may also be involved in certain human glomerular diseases. These observations support the conclusion that Vangl2 modulates glomerular injury, at least in part by acting as a brake on MMP9, a potentially harmful endogenous enzyme. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Polaridade Celular , Glomerulosclerose Segmentar e Focal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glomérulos Renais/metabolismo , Proteínas de Membrana/metabolismo , Nefrose Lipoide/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Podócitos/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Nefrose Lipoide/genética , Nefrose Lipoide/patologia , Nefrose Lipoide/fisiopatologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Podócitos/patologia , Transdução de Sinais , Adulto Jovem
12.
J Cell Mol Med ; 22(5): 2656-2669, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29498212

RESUMO

Dedifferentiation and loss of podocytes are the major cause of chronic kidney disease. Dach1, a transcription factor that is essential for cell fate, was found in genome-wide association studies to be associated with the glomerular filtration rate. We found that podocytes express high levels of Dach1 in vivo and to a much lower extent in vitro. Parietal epithelial cells (PECs) that are still under debate to be a type of progenitor cell for podocytes expressed Dach1 only at low levels. The transfection of PECs with a plasmid encoding for Dach1 induced the expression of synaptopodin, a podocyte-specific protein, demonstrated by immunocytochemistry and Western blot. Furthermore, synaptopodin was located along actin fibres in a punctate pattern in Dach1-expressing PECs comparable with differentiated podocytes. Moreover, dedifferentiating podocytes of isolated glomeruli showed a significant reduction in the expression of Dach1 together with synaptopodin after 9 days in cell culture. To study the role of Dach1 in vivo, we used the zebrafish larva as an animal model. Knockdown of the zebrafish ortholog Dachd by morpholino injection into fertilized eggs resulted in a severe renal phenotype. The glomeruli of the zebrafish larvae showed morphological changes of the glomerulus accompanied by down-regulation of nephrin and leakage of the filtration barrier. Interestingly, glomeruli of biopsies from patients suffering from diabetic nephropathy showed also a significant reduction of Dach1 and synaptopodin in contrast to control biopsies. Taken together, Dach1 is a transcription factor that is important for podocyte differentiation and proper kidney function.


Assuntos
Podócitos/metabolismo , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Regulação para Baixo/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Humanos , Larva/ultraestrutura , Masculino , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Podócitos/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Regulação para Cima/genética , Peixe-Zebra , Proteínas de Peixe-Zebra
13.
J Cell Mol Med ; 22(11): 5265-5277, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30133147

RESUMO

Podocyte loss and changes to the complex morphology are major causes of chronic kidney disease (CKD). As the incidence is continuously increasing over the last decades without sufficient treatment, it is important to find predicting biomarkers. Therefore, we measured urinary mRNA levels of podocyte genes NPHS1, NPHS2, PODXL and BDNF, KIM-1, CTSL by qRT-PCR of 120 CKD patients. We showed a strong correlation between BDNF and the kidney injury marker KIM-1, which were also correlated with NPHS1, suggesting podocytes as a contributing source. In human biopsies, BDNF was localized in the cell body and major processes of podocytes. In glomeruli of diabetic nephropathy patients, we found a strong BDNF signal in the remaining podocytes. An inhibition of the BDNF receptor TrkB resulted in enhanced podocyte dedifferentiation. The knockdown of the orthologue resulted in pericardial oedema formation and lowered viability of zebrafish larvae. We found an enlarged Bowman's space, dilated glomerular capillaries, podocyte loss and an impaired glomerular filtration. We demonstrated that BDNF is essential for glomerular development, morphology and function and the expression of BDNF and KIM-1 is highly correlated in urine cells of CKD patients. Therefore, BDNF mRNA in urine cells could serve as a potential CKD biomarker.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Nefropatias Diabéticas/genética , Receptor Celular 1 do Vírus da Hepatite A/genética , Glicoproteínas de Membrana/genética , Receptor trkB/genética , Insuficiência Renal Crônica/genética , Idoso , Animais , Fator Neurotrófico Derivado do Encéfalo/urina , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Humanos , Rim/metabolismo , Rim/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Glicoproteínas de Membrana/urina , Pessoa de Meia-Idade , Podócitos/metabolismo , Podócitos/patologia , Proteinúria/genética , Proteinúria/patologia , RNA Mensageiro/genética , Receptor trkB/urina , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/urina , Peixe-Zebra/genética
14.
Clin Immunol ; 194: 67-74, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30018024

RESUMO

Calcineurin inhibitors (CNIs) are a cornerstone of the current treatment in solid organ transplantation and autoimmune disease. However, CNIs also bear deleterious effects as they cause glomerular and tubulointerstitial fibrosis in the kidney. We recently identified Y-box protein-1 (YB-1) as a novel downstream effector of CNI-signaling in the cytoplasm of glomerular cells. In the present study, we corroborate the pro-fibrotic role of YB-1 in glomeruli of patients under CNI-treatment. Such effects in glomeruli are significantly mitigated in CNI-treated mice with half-normal YB-1 expression (Yb1+/-). Surprisingly, in the tubulointerstitium we observe an opposite role of the CNI-YB-1 axis. Here, YB-1 is predominantly located to the nuclei and represses transcription of several extracellular matrix genes. Consistently, CNI-treatment in Yb1+/- mice markedly increases pro-fibrotic changes in the tubulointerstitium. In summary, our data provide evidence that fibrotic CNI-induced YB-1 effects in glomerular cells need to be contrasted with beneficial anti-fibrotic effects in the tubulointerstitium.


Assuntos
Inibidores de Calcineurina/efeitos adversos , Fibrose/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Fatores de Transcrição/metabolismo , Animais , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Fibrose/genética , Rim/efeitos dos fármacos , Rim/metabolismo , Nefropatias/genética , Glomérulos Renais/metabolismo , Transplante de Rim/métodos , Camundongos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
15.
Ann Rheum Dis ; 77(8): 1226-1233, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29724730

RESUMO

OBJECTIVES: To characterise renal tissue metabolic pathway gene expression in different forms of glomerulonephritis. METHODS: Patients with nephrotic syndrome (NS), antineutrophil cytoplasmic antibody-associated vasculitis (AAV), systemic lupus erythematosus (SLE) and healthy living donors (LD) were studied. Clinically indicated renal biopsies were obtained at time of diagnosis and microdissected into glomerular and tubulointerstitial compartments. Microarray-derived differential gene expression of 88 genes representing critical enzymes of metabolic pathways and 25 genes related to immune cell markers was compared between disease groups. Correlation analyses measured relationships between metabolic pathways, kidney function and cytokine production. RESULTS: Reduced steady state levels of mRNA species were enriched in pathways of oxidative phosphorylation and increased in the pentose phosphate pathway (PPP) with maximal perturbation in AAV and SLE followed by NS, and least in LD. Transcript regulation was isozymes specific with robust regulation in hexokinases, enolases and glucose transporters. Intercorrelation networks were observed between enzymes of the PPP (eg, transketolase) and macrophage markers (eg, CD68) (r=0.49, p<0.01). Increased PPP transcript levels were associated with reduced glomerular filtration rate in the glomerular (r=-0.49, p<0.01) and tubulointerstitial (r=-0.41, p<0.01) compartments. PPP expression and tumour necrosis factor activation were tightly co-expressed (r=0.70, p<0.01). CONCLUSION: This study demonstrated concordant alterations of the renal transcriptome consistent with metabolic reprogramming across different forms of glomerulonephritis. Activation of the PPP was tightly linked with intrarenal macrophage marker expression, reduced kidney function and increased production of cytokines. Modulation of glucose metabolism may offer novel immune-modulatory therapeutic approaches in rare kidney diseases.


Assuntos
Glomerulonefrite/metabolismo , Redes e Vias Metabólicas/genética , Adulto , Idoso , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/metabolismo , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Biópsia , Citocinas/biossíntese , Feminino , Regulação da Expressão Gênica , Glomerulonefrite/genética , Glomerulonefrite/patologia , Humanos , Isoenzimas/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Masculino , Redes e Vias Metabólicas/imunologia , Pessoa de Meia-Idade , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Via de Pentose Fosfato/genética , RNA Mensageiro/genética , Transcriptoma , Adulto Jovem
16.
J Am Soc Nephrol ; 28(7): 2144-2157, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28270414

RESUMO

Mammalian target of rapamycin (mTOR) signaling is involved in a variety of kidney diseases. Clinical trials administering mTOR inhibitors to patients with FSGS, a prototypic podocyte disease, led to conflicting results, ranging from remission to deterioration of kidney function. Here, we combined complex genetic titration of mTOR complex 1 (mTORC1) levels in murine glomerular disease models, pharmacologic studies, and human studies to precisely delineate the role of mTOR in FSGS. mTORC1 target genes were significantly induced in microdissected glomeruli from both patients with FSGS and a murine FSGS model. Furthermore, a mouse model with constitutive mTORC1 activation closely recapitulated human FSGS. Notably, the complete knockout of mTORC1 by induced deletion of both Raptor alleles accelerated the progression of murine FSGS models. However, lowering mTORC1 signaling by deleting just one Raptor allele ameliorated the progression of glomerulosclerosis. Similarly, low-dose treatment with the mTORC1 inhibitor rapamycin efficiently diminished disease progression. Mechanistically, complete pharmacologic inhibition of mTOR in immortalized podocytes shifted the cellular energy metabolism toward reduced rates of oxidative phosphorylation and anaerobic glycolysis, which correlated with increased production of reactive oxygen species. Together, these data suggest that podocyte injury and loss is commonly followed by adaptive mTOR activation. Prolonged mTOR activation, however, results in a metabolic podocyte reprogramming leading to increased cellular stress and dedifferentiation, thus offering a treatment rationale for incomplete mTOR inhibition.


Assuntos
Glomerulosclerose Segmentar e Focal/etiologia , Glomerulosclerose Segmentar e Focal/prevenção & controle , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/fisiologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/fisiologia , Animais , Progressão da Doença , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos
17.
Nucleic Acids Res ; 43(12): 5810-23, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26007655

RESUMO

A crucial step in the cellular adaptation to oxygen deficiency is the binding of hypoxia-inducible factors (HIFs) to hypoxia response elements (HREs) of oxygen-regulated genes. Genome-wide HIF-1α/2α/ß DNA-binding studies revealed that the majority of HREs reside distant to the promoter regions, but the function of these distal HREs has only been marginally studied in the genomic context. We used chromatin immunoprecipitation (ChIP), gene editing (TALEN) and chromosome conformation capture (3C) to localize and functionally characterize a 82 kb upstream HRE that solely drives oxygen-regulated expression of the newly identified HIF target gene PAG1. PAG1, a transmembrane adaptor protein involved in Src signalling, was hypoxically induced in various cell lines and mouse tissues. ChIP and reporter gene assays demonstrated that the -82 kb HRE regulates PAG1, but not an equally distant gene further upstream, by direct interaction with HIF. Ablation of the consensus HRE motif abolished the hypoxic induction of PAG1 but not general oxygen signalling. 3C assays revealed that the -82 kb HRE physically associates with the PAG1 promoter region, independent of HIF-DNA interaction. These results demonstrate a constitutive interaction between the -82 kb HRE and the PAG1 promoter, suggesting a physiologically important rapid response to hypoxia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromatina/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/genética , Elementos de Resposta , Ativação Transcricional , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Hipóxia Celular , Linhagem Celular , Cromatina/química , Células HeLa , Humanos , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Transdução de Sinais , Quinases da Família src/metabolismo
18.
J Am Soc Nephrol ; 27(6): 1650-64, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26453615

RESUMO

Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow-derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN.


Assuntos
Antígenos de Diferenciação de Linfócitos B/fisiologia , Glomerulonefrite/etiologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Feminino , Glomerulonefrite/patologia , Glomérulos Renais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
J Am Soc Nephrol ; 27(6): 1635-49, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26567242

RESUMO

Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.


Assuntos
Catepsinas/fisiologia , Angiopatias Diabéticas/etiologia , Células Endoteliais/enzimologia , Receptor PAR-2/metabolismo , Animais , Catepsinas/antagonistas & inibidores , Células Cultivadas , Glomérulos Renais/citologia , Masculino , Camundongos , Microvasos , Prolina/análogos & derivados , Prolina/farmacologia , Urotélio/citologia
20.
J Am Soc Nephrol ; 27(9): 2906-16, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26940094

RESUMO

A specific biomarker that can separate active renal vasculitis from other causes of renal dysfunction is lacking, with a kidney biopsy often being required. Soluble CD163 (sCD163), shed by monocytes and macrophages, has been reported as a potential biomarker in diseases associated with excessive macrophage activation. Thus, we hypothesized that urinary sCD163 shed by crescent macrophages correlates with active glomerular inflammation. We detected sCD163 in rat urine early in the disease course of experimental vasculitis. Moreover, microdissected glomeruli from patients with small vessel vasculitis (SVV) had markedly higher levels of CD163 mRNA than did those from patients with lupus nephritis, diabetic nephropathy, or nephrotic syndrome. Both glomeruli and interstitium of patients with SVV strongly expressed CD163 protein. In 479 individuals, including patients with SVV, disease controls, and healthy controls, serum levels of sCD163 did not differ between the groups. However, in an inception cohort, including 177 patients with SVV, patients with active renal vasculitis had markedly higher urinary sCD163 levels than did patients in remission, disease controls, or healthy controls. Analyses in both internal and external validation cohorts confirmed these results. Setting a derived optimum cutoff for urinary sCD163 of 0.3 ng/mmol creatinine for detection of active renal vasculitis resulted in a sensitivity of 83%, specificity of 96%, and a positive likelihood ratio of 20.8. These data indicate that urinary sCD163 level associates very tightly with active renal vasculitis, and assessing this level may be a noninvasive method for diagnosing renal flare in the setting of a known diagnosis of SVV.


Assuntos
Antígenos CD/urina , Antígenos de Diferenciação Mielomonocítica/urina , Nefropatias/urina , Rim/irrigação sanguínea , Vasculite/urina , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/urina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Superfície Celular , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa