Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 182: 169-183, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29635029

RESUMO

In vivo histology using magnetic resonance imaging (MRI) is a newly emerging research field that aims to non-invasively characterize tissue microstructure. The implications of in vivo histology are many, from discovering novel biomarkers to studying human development, to providing tools for disease diagnosis and monitoring the effects of novel treatments on tissue. This review focuses on quantitative MRI (qMRI) techniques that are used to map spinal cord microstructure. Opening with a rationale for non-invasive imaging of the spinal cord, this article continues with a brief overview of the existing MRI techniques for axon and myelin imaging, followed by the specific challenges and potential solutions for acquiring and processing such data. The final part of this review focuses on histological validation, with suggested tissue preparation, acquisition and processing protocols for large-scale microscopy.


Assuntos
Axônios , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina , Neuroimagem/métodos , Medula Espinal/diagnóstico por imagem , Estudos de Validação como Assunto , Humanos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Neuroimagem/normas
2.
Neuroimage ; 145(Pt A): 11-23, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27664830

RESUMO

The fiber g-ratio is defined as the ratio of the inner to the outer diameter of the myelin sheath. This ratio provides a measure of the myelin thickness that complements axon morphology (diameter and density) for assessment of demyelination in diseases such as multiple sclerosis. Previous work has shown that an aggregate g-ratio map can be computed using a formula that combines axon and myelin density measured with quantitative MRI. In this work, we computed g-ratio weighted maps in the cervical spinal cord of nine healthy subjects. We utilized the 300mT/m gradients from the CONNECTOM scanner to estimate the fraction of restricted water (fr) with high accuracy, using the CHARMED model. Myelin density was estimated using the lipid and macromolecular tissue volume (MTV) method, derived from normalized proton density (PD) mapping. The variability across spinal level, laterality and subject were assessed using a three-way ANOVA. The average g-ratio value obtained in the white matter was 0.76+/-0.03, consistent with previous histology work. Coefficients of variation of fr and MTV were respectively 4.3% and 13.7%. fr and myelin density were significantly different across spinal tracts (p=3×10-7 and 0.004 respectively) and were positively correlated in the white matter (r=0.42), suggesting shared microstructural information. The aggregate g-ratio did not show significant differences across tracts (p=0.6). This study suggests that fr and myelin density can be measured in vivo with high precision and that they can be combined to produce a g-ratio-weighted map robust to free water pool contamination from cerebrospinal fluid or veins. Potential applications include the study of early demyelination in multiple sclerosis, and the quantitative assessment of remyelination drugs.


Assuntos
Imageamento por Ressonância Magnética/métodos , Bainha de Mielina , Medula Espinal/diagnóstico por imagem , Adulto , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino
3.
Neuroimage ; 119: 89-102, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26095090

RESUMO

Recently, T2* imaging at 7Tesla (T) MRI was shown to reveal microstructural features of the cortical myeloarchitecture thanks to an increase in contrast-to-noise ratio. However, several confounds hamper the specificity of T2* measures (iron content, blood vessels, tissues orientation). Another metric, magnetization transfer ratio (MTR), is known to also be sensitive to myelin content and thus would be an excellent complementary measure because its underlying contrast mechanisms are different than that from T2*. The goal of this study was thus to combine MTR and T2* using multivariate statistics in order to gain insights into cortical myelin content. Seven healthy subjects were scanned at 7T and 3T to obtain T2* and MTR data, respectively. A multivariate myelin estimation model (MMEM) was developed, and consists in (i) normalizing T2* and MTR values and (ii) extracting their shared information using independent component analysis (ICA). B0 orientation dependence and cortical thickness were also computed and included in the model. Results showed high correlation between MTR and T2* in the whole cortex (r=0.76, p<10(-16)), suggesting that both metrics are partly driven by a common source of contrast, here assumed to be the myelin. Average MTR and T2* were respectively 31.0+/-0.3% and 32.1+/-1.4 ms. Results of the MMEM spatial distribution showed similar trends to that from histological work stained for myelin (r=0.77, p<0.01). Significant right-left differences were detected in the primary motor cortex (p<0.05), the posterior cingulate cortex (p<0.05) and the visual cortex (p<0.05). This study demonstrates that MTR and T2* are highly correlated in the cortex. The combination of MTR, T2*, CT and B0 orientation may be a useful means to study cortical myeloarchitecture with more specificity than using any of the individual methods. The MMEM framework is extendable to other contrasts such as T1 and diffusion MRI.


Assuntos
Córtex Cerebral/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina , Adulto , Feminino , Humanos , Fenômenos Magnéticos , Masculino , Análise Multivariada
4.
Neuroimage ; 119: 262-71, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26099457

RESUMO

Template-based analysis has proven to be an efficient, objective and reproducible way of extracting relevant information from multi-parametric MRI data. Using common atlases, it is possible to quantify MRI metrics within specific regions without the need for manual segmentation. This method is therefore free from user-bias and amenable to group studies. While template-based analysis is common procedure for the brain, there is currently no atlas of the white matter (WM) spinal pathways. The goals of this study were: (i) to create an atlas of the white matter tracts compatible with the MNI-Poly-AMU template and (ii) to propose methods to quantify metrics within the atlas that account for partial volume effect. The WM atlas was generated by: (i) digitalizing an existing WM atlas from a well-known source (Gray's Anatomy), (ii) registering this atlas to the MNI-Poly-AMU template at the corresponding slice (C4 vertebral level), (iii) propagating the atlas throughout all slices of the template (C1 to T6) using regularized diffeomorphic transformations and (iv) computing partial volume values for each voxel and each tract. Several approaches were implemented and validated to quantify metrics within the atlas, including weighted-average and Gaussian mixture models. Proof-of-concept application was done in five subjects for quantifying magnetization transfer ratio (MTR) in each tract of the atlas. The resulting WM atlas showed consistent topological organization and smooth transitions along the rostro-caudal axis. The median MTR across tracts was 26.2. Significant differences were detected across tracts, vertebral levels and subjects, but not across laterality (right-left). Among the different tested approaches to extract metrics, the maximum a posteriori showed highest performance with respect to noise, inter-tract variability, tract size and partial volume effect. This new WM atlas of the human spinal cord overcomes the biases associated with manual delineation and partial volume effect. Combined with multi-parametric data, the atlas can be applied to study demyelination and degeneration in diseases such as multiple sclerosis and will facilitate the conduction of longitudinal and multi-center studies.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Medula Espinal/anatomia & histologia , Substância Branca/anatomia & histologia , Adulto , Atlas como Assunto , Feminino , Humanos , Masculino , Software , Adulto Jovem
5.
Neuroimage ; 93 Pt 2: 189-200, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23357070

RESUMO

Studies have shown that T2* contrast can reveal features of cortical anatomy. However, understanding the relationship between T2* contrast and the underlying cyto- and myelo-architecture is not an easy task, given the number of confounds, such as myelin, iron, blood vessels and structure orientation. Moreover, it is difficult to obtain reliable T2* measurements in the cortex due to its thin and folded geometry and the presence of artifacts. This review addresses issues associated with T2* mapping in the human cortex. After describing the theory behind T2* relaxation, a list of practical steps is proposed to reliably acquire and process T2* data and then map these values within the cortex using surface-based analysis. The last section addresses the question: "What can we gain from T2* cortical mapping?", with particular emphasis on Brodmann mapping.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/anatomia & histologia , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador
6.
Neuroimage ; 102 Pt 2: 817-27, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25204864

RESUMO

The field of spinal cord MRI is lacking a common template, as existing for the brain, which would allow extraction of multi-parametric data (diffusion-weighted, magnetization transfer, etc.) without user bias, thereby facilitating group analysis and multi-center studies. This paper describes a framework to produce an unbiased average anatomical template of the human spinal cord. The template was created by co-registering T2-weighted images (N = 16 healthy volunteers) using a series of pre-processing steps followed by non-linear registration. A white and gray matter probabilistic template was then merged to the average anatomical template, yielding the MNI-Poly-AMU template, which currently covers vertebral levels C1 to T6. New subjects can be registered to the template using a dedicated image processing pipeline. Validation was conducted on 16 additional subjects by comparing an automatic template-based segmentation and manual segmentation, yielding a median Dice coefficient of 0.89. The registration pipeline is rapid (~15 min), automatic after one C2/C3 landmark manual identification, and robust, thereby reducing subjective variability and bias associated with manual segmentation. The template can notably be used for measurements of spinal cord cross-sectional area, voxel-based morphometry, identification of anatomical features (e.g., vertebral levels, white and gray matter location) and unbiased extraction of multi-parametric data.


Assuntos
Substância Cinzenta/anatomia & histologia , Imageamento por Ressonância Magnética , Substância Branca/anatomia & histologia , Adulto , Feminino , Humanos , Masculino , Medula Espinal/anatomia & histologia
7.
Neuroimage ; 84: 1070-81, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23685159

RESUMO

A first-ever spinal cord imaging meeting was sponsored by the International Spinal Research Trust and the Wings for Life Foundation with the aim of identifying the current state-of-the-art of spinal cord imaging, the current greatest challenges, and greatest needs for future development. This meeting was attended by a small group of invited experts spanning all aspects of spinal cord imaging from basic research to clinical practice. The greatest current challenges for spinal cord imaging were identified as arising from the imaging environment itself; difficult imaging environment created by the bone surrounding the spinal canal, physiological motion of the cord and adjacent tissues, and small cross-sectional dimensions of the spinal cord, exacerbated by metallic implants often present in injured patients. Challenges were also identified as a result of a lack of "critical mass" of researchers taking on the development of spinal cord imaging, affecting both the rate of progress in the field, and the demand for equipment and software to manufacturers to produce the necessary tools. Here we define the current state-of-the-art of spinal cord imaging, discuss the underlying theory and challenges, and present the evidence for the current and potential power of these methods. In two review papers (part I and part II), we propose that the challenges can be overcome with advances in methods, improving availability and effectiveness of methods, and linking existing researchers to create the necessary scientific and clinical network to advance the rate of progress and impact of the research.


Assuntos
Neuroimagem/métodos , Traumatismos da Medula Espinal/diagnóstico , Medula Espinal , Humanos , Medula Espinal/patologia
8.
Neuroimage ; 84: 1082-93, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23859923

RESUMO

A first-ever spinal cord imaging meeting was sponsored by the International Spinal Research Trust and the Wings for Life Foundation with the aim of identifying the current state-of-the-art of spinal cord imaging, the current greatest challenges, and greatest needs for future development. This meeting was attended by a small group of invited experts spanning all aspects of spinal cord imaging from basic research to clinical practice. The greatest current challenges for spinal cord imaging were identified as arising from the imaging environment itself; difficult imaging environment created by the bone surrounding the spinal canal, physiological motion of the cord and adjacent tissues, and small crosssectional dimensions of the spinal cord, exacerbated by metallic implants often present in injured patients. Challenges were also identified as a result of a lack of "critical mass" of researchers taking on the development of spinal cord imaging, affecting both the rate of progress in the field, and the demand for equipment and software to manufacturers to produce the necessary tools. Here we define the current state-of-the-art of spinal cord imaging, discuss the underlying theory and challenges, and present the evidence for the current and potential power of these methods. In two review papers (part I and part II), we propose that the challenges can be overcome with advances in methods, improving availability and effectiveness of methods, and linking existing researchers to create the necessary scientific and clinical network to advance the rate of progress and impact of the research.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/tendências , Doenças da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/diagnóstico , Animais , Humanos , Medula Espinal/patologia
9.
Neuroimage ; 80: 220-33, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23707579

RESUMO

Perhaps more than any other "-omics" endeavor, the accuracy and level of detail obtained from mapping the major connection pathways in the living human brain with diffusion MRI depend on the capabilities of the imaging technology used. The current tools are remarkable; allowing the formation of an "image" of the water diffusion probability distribution in regions of complex crossing fibers at each of half a million voxels in the brain. Nonetheless our ability to map the connection pathways is limited by the image sensitivity and resolution, and also the contrast and resolution in encoding of the diffusion probability distribution. The goal of our Human Connectome Project (HCP) is to address these limiting factors by re-engineering the scanner from the ground up to optimize the high b-value, high angular resolution diffusion imaging needed for sensitive and accurate mapping of the brain's structural connections. Our efforts were directed based on the relative contributions of each scanner component. The gradient subsection was a major focus since gradient amplitude is central to determining the diffusion contrast, the amount of T2 signal loss, and the blurring of the water PDF over the course of the diffusion time. By implementing a novel 4-port drive geometry and optimizing size and linearity for the brain, we demonstrate a whole-body sized scanner with G(max) = 300 mT/m on each axis capable of the sustained duty cycle needed for diffusion imaging. The system is capable of slewing the gradient at a rate of 200 T/m/s as needed for the EPI image encoding. In order to enhance the efficiency of the diffusion sequence we implemented a FOV shifting approach to Simultaneous MultiSlice (SMS) EPI capable of unaliasing 3 slices excited simultaneously with a modest g-factor penalty allowing us to diffusion encode whole brain volumes with low TR and TE. Finally we combine the multi-slice approach with a compressive sampling reconstruction to sufficiently undersample q-space to achieve a DSI scan in less than 5 min. To augment this accelerated imaging approach we developed a 64-channel, tight-fitting brain array coil and show its performance benefit compared to a commercial 32-channel coil at all locations in the brain for these accelerated acquisitions. The technical challenges of developing the over-all system are discussed as well as results from SNR comparisons, ODF metrics and fiber tracking comparisons. The ultra-high gradients yielded substantial and immediate gains in the sensitivity through reduction of TE and improved signal detection and increased efficiency of the DSI or HARDI acquisition, accuracy and resolution of diffusion tractography, as defined by identification of known structure and fiber crossing.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Conectoma/métodos , Imagem de Tensor de Difusão/métodos , Aumento da Imagem/métodos , Modelos Anatômicos , Modelos Neurológicos , Animais , Humanos , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia
10.
Neuroimage Rep ; 3(1): 100150, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37324783

RESUMO

Obtaining high quality images of the spinal cord with MRI is difficult, partly due to the fact that the spinal cord is surrounded by a number of structures that have differing magnetic susceptibility. This causes inhomogeneities in the magnetic field, which in turn lead to image artifacts. In order to address this issue, linear compensation gradients can be employed. The latter can be generated using an MRI scanner's first order gradient coils and adjusted on a per-slice basis, in order to correct for through-plane ("z") magnetic field gradients. This approach is referred to as z-shimming. The aim of this study is two-fold. The first aim was to replicate aspects of a previous study wherein z-shimming was found to improve image quality in T2*-weighted echo-planar imaging. Our second aim was to improve upon the z-shimming approach by including in-plane compensation gradients and adjusting the compensation gradients during the image acquisition process so that they take into account respiration-induced magnetic field variations. We refer to this novel approach as realtime dynamic shimming. Measurements performed in a group of 12 healthy volunteers at 3 T show improved signal homogeneity along the spinal cord when using z-shimming. Signal homogeneity may be further improved by including realtime compensation for respiration-induced field gradients and by also doing this for gradients along the in-plane axes.

11.
Neuroimage ; 60(2): 1006-14, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22270354

RESUMO

Ultra-high field MRI (≥ 7 T) has recently shown great sensitivity to depict patterns of tissue microarchitecture. Moreover, recent studies have demonstrated a dependency between T2* and orientation of white matter fibers with respect to the main magnetic field B0. In this study we probed the potential of T2* mapping at 7 T to provide new markers of cortical architecture. We acquired multi-echo measurements at 7 T and mapped T2* over the entire cortex of eight healthy individuals using surface-based analysis. B0 dependence was tested by computing the angle θ(z) between the normal of the surface and the direction of B0, then fitting T2*(θ(z)) using model from the literature. Average T2* in the cortex was 32.20 +/- 1.35 ms. Patterns of lower T2* were detected in the sensorimotor, visual and auditory cortices, likely reflecting higher myelin content. Significantly lower T2* was detected in the left hemisphere of the auditory region (p<0.005), suggesting higher myelin content, in accordance with previous investigations. B0 orientation dependence was detected in some areas of the cortex, the strongest being in the primary motor cortex (∆R2*=4.10 Hz). This study demonstrates that quantitative T2* measures at 7 T MRI can reveal patterns of cytoarchitectural organization of the human cortex in vivo and that B0 orientation dependence can probe the coherency and orientation of gray matter fibers in the cortex, shedding light into the potential use of this type of contrast to characterize cyto-/myeloarchitecture and to understand the pathophysiology of diseases associated with changes in iron and/or myelin concentration.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Adulto , Córtex Cerebral/citologia , Humanos
12.
Neuroimage ; 63(1): 245-52, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22776463

RESUMO

The evaluation of spinal cord neuronal activity in humans with functional magnetic resonance imaging (fMRI) is technically challenging. Major difficulties arise from cardiac and respiratory movement artifacts that constitute significant sources of noise. In this paper we assessed the Correction of Structured noise using spatial Independent Component Analysis (CORSICA). FMRI data of the cervical spinal cord were acquired in 14 healthy subjects using gradient-echo EPI. Nociceptive electrical stimuli were applied to the thumb. Additional data with short TR (250 ms, to prevent aliasing) were acquired to generate a spatial map of physiological noise derived from Independent Component Analysis (ICA). Physiological noise was subsequently removed from the long-TR data after selecting independent components based on the generated noise map. Stimulus-evoked responses were analyzed using the general linear model, with and without CORSICA and with a regressor generated from the cerebrospinal fluid region. Results showed higher sensitivity to detect stimulus-related activation in the targeted dorsal segment of the cord after CORSICA. Furthermore, fewer voxels showed stimulus-related signal changes in the CSF and outside the spinal region, suggesting an increase in specificity. ICA can be used to effectively reduce physiological noise in spinal cord fMRI time series.


Assuntos
Algoritmos , Potenciais Somatossensoriais Evocados/fisiologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Nociceptividade/fisiologia , Medula Espinal/fisiologia , Humanos , Análise de Componente Principal , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído
13.
Neuroimage ; 63(1): 569-80, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22732564

RESUMO

In diffusion MRI, simultaneous multi-slice single-shot EPI acquisitions have the potential to increase the number of diffusion directions obtained per unit time, allowing more diffusion encoding in high angular resolution diffusion imaging (HARDI) acquisitions. Nonetheless, unaliasing simultaneously acquired, closely spaced slices with parallel imaging methods can be difficult, leading to high g-factor penalties (i.e., lower SNR). The CAIPIRINHA technique was developed to reduce the g-factor in simultaneous multi-slice acquisitions by introducing inter-slice image shifts and thus increase the distance between aliased voxels. Because the CAIPIRINHA technique achieved this by controlling the phase of the RF excitations for each line of k-space, it is not directly applicable to single-shot EPI employed in conventional diffusion imaging. We adopt a recent gradient encoding method, which we termed "blipped-CAIPI", to create the image shifts needed to apply CAIPIRINHA to EPI. Here, we use pseudo-multiple replica SNR and bootstrapping metrics to assess the performance of the blipped-CAIPI method in 3× simultaneous multi-slice diffusion studies. Further, we introduce a novel image reconstruction method to reduce detrimental ghosting artifacts in these acquisitions. We show that data acquisition times for Q-ball and diffusion spectrum imaging (DSI) can be reduced 3-fold with a minor loss in SNR and with similar diffusion results compared to conventional acquisitions.


Assuntos
Algoritmos , Encéfalo/citologia , Imagem de Tensor de Difusão/métodos , Imagem Ecoplanar/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Neuroimage ; 57(3): 1068-76, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21596140

RESUMO

One goal of in vivo neuroimaging is the detection of neurodegenerative processes and anatomical reorganizations after spinal cord (SC) injury. Non-invasive examination of white matter fibers in the living SC can be conducted using magnetic resonance diffusion-weighted imaging. However, this technique is challenging at the spinal level due to the small cross-sectional size of the cord and the presence of physiological motion and susceptibility artifacts. In this study, we acquired in vivo high angular resolution diffusion imaging (HARDI) data at 3T in cats submitted to partial SC injury. Cats were imaged before, 3 and 21 days after injury. Spatial resolution was enhanced to 1.5 × 1.5 × 1 mm(3) using super-resolution technique and distortions were corrected using the reversed gradient method. Tractography-derived regions of interest were generated in the dorsal, ventral, right and left quadrants, to evaluate diffusion tensor imaging (DTI) and Q-Ball imaging metrics with regards to their sensitivity in detecting primary and secondary lesions. A three-way ANOVA tested the effect of session (intact, D3, D21), cross-sectional region (left, right, dorsal and ventral) and rostrocaudal location. Significant effect of session was found for FA (P<0.001), GFA (P<0.05) and radial diffusivity (P<0.001). Post-hoc paired T-test corrected for multiple comparisons showed significant changes at the lesion epicenter (P<0.005). More interestingly, significant changes were also found several centimeters from the lesion epicenter at both 3 and 21 days. This decrease was specific to the type of fibers, i.e., rostrally to the lesion on the dorsal aspect of the cord and caudally to the lesion ipsilaterally, suggesting the detection of Wallerian degeneration.


Assuntos
Imagem de Tensor de Difusão , Interpretação de Imagem Assistida por Computador/métodos , Traumatismos da Medula Espinal/patologia , Degeneração Walleriana/patologia , Animais , Gatos , Medula Espinal/patologia
15.
Neuroimage ; 57(1): 55-62, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21511042

RESUMO

Cortical subpial demyelination is frequent in multiple sclerosis (MS) and is closely associated with disease progression and poor neurological outcome. Although cortical lesions have been difficult to detect using conventional MRI, preliminary data using T2*-weighted imaging at ultra-high field 7T MRI showed improved sensitivity for detecting and categorizing different histological types of cortical MS lesions. In this study we combined high-resolution 7T MRI with a surface-based analysis technique to quantify and map subpial T2*-weighted signal changes in seventeen patients with MS. We applied a robust method to register 7T data with the reconstructed cortical surface of each individual and used a general linear model to assess in vivo an increase in subpial T2*-weighted signal in patients versus age-matched controls, and to investigate the spatial distribution of cortical subpial changes across the cortical ribbon. We also assessed the relationship between subpial T2* signal changes at 7T, Expanded Disability Status Scale (EDSS) score and white matter lesion load (WMLL). Patients with MS showed significant T2*-weighted signal increase in the frontal lobes (parsopercularis, precentral gyrus, middle and superior frontal gyrus, orbitofrontal cortex), anterior cingulate, temporal (superior, middle and inferior temporal gyri), and parietal cortices (superior and inferior parietal cortex, precuneus), but also in occipital regions of the left hemisphere. We found significant correlations between subpial T2*-weighted signal and EDSS score in the precentral gyrus (ρ=0.56, P=0.02) and between T2*-weighted signal and WMLL in the lateral orbitofrontal, superior parietal, cuneus, precentral and superior frontal regions. Our data support the presence of disseminated subpial increases in T2* signal in subjects with MS, which may reflect the diffuse subpial pathology described in neuropathology.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Adulto , Feminino , Humanos , Masculino
16.
Neuroimage ; 55(3): 1024-33, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21232610

RESUMO

Characterizing demyelination/degeneration of spinal pathways in traumatic spinal cord injured (SCI) patients is crucial for assessing the prognosis of functional rehabilitation. Novel techniques based on diffusion-weighted (DW) magnetic resonance imaging (MRI) and magnetization transfer (MT) imaging provide sensitive and specific markers of white matter pathology. In this paper we combined for the first time high angular resolution diffusion-weighted imaging (HARDI), MT imaging and atrophy measurements to evaluate the cervical spinal cord of fourteen SCI patients and age-matched controls. We used high in-plane resolution to delineate dorsal and ventrolateral pathways. Significant differences were detected between patients and controls in the normal-appearing white matter for fractional anisotropy (FA, p<0.0001), axial diffusivity (p<0.05), radial diffusivity (p<0.05), generalized fractional anisotropy (GFA, p<0.0001), magnetization transfer ratio (MTR, p<0.0001) and cord area (p<0.05). No significant difference was detected in mean diffusivity (p=0.41), T1-weighted (p=0.76) and T2-weighted (p=0.09) signals. MRI metrics were remarkably well correlated with clinical disability (Pearson's correlations, FA: p<0.01, GFA: p<0.01, radial diffusivity: p=0.01, MTR: p=0.04 and atrophy: p<0.01). Stepwise linear regressions showed that measures of MTR in the dorsal spinal cord predicted the sensory disability whereas measures of MTR in the ventro-lateral spinal cord predicted the motor disability (ASIA score). However, diffusion metrics were not specific to the sensorimotor scores. Due to the specificity of axial and radial diffusivity and MT measurements, results suggest the detection of demyelination and degeneration in SCI patients. Combining HARDI with MT imaging is a promising approach to gain specificity in characterizing spinal cord pathways in traumatic injury.


Assuntos
Doenças Desmielinizantes/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/patologia , Traumatismos da Medula Espinal/patologia , Adulto , Idoso , Artefatos , Atrofia , Avaliação da Deficiência , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Medula Espinal/patologia , Adulto Jovem
17.
Magn Reson Med ; 66(4): 1198-208, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21433068

RESUMO

Diffusion and functional magnetic resonance imaging of the spinal cord remain challenging due to the small cross-sectional size of the cord and susceptibility-related distortions. Although partially addressable through parallel imaging, few highly parallel array coils have been implemented for the cervical cord. Here, we developed a 32-channel coil that fully covers the brain and c-spine and characterized its performance in comparison with a commercially available head/neck/spine array. Image and temporal signal-to-noise ratio were, respectively, increased by 2× and 1.8× in the cervical cord. Averaged g-factors at 4× acceleration were lowered by 22% in the brain and by 39% in the spinal cord, enabling 1-mm isotropic R = 4 multi-echo magnetization prepared gradient echo of the full brain and c-spine in 3:20 min. Diffusion imaging of the cord at 0.6 × 0.6 × 5 mm(3) resolution and tractography of the full brain and c-spine at 1.7-mm isotropic resolution were feasible without noticeable distortion. Improvements of this nature potentially enhance numerous basic and clinical research studies focused on spinal and supraspinal regions.


Assuntos
Encefalopatias/diagnóstico , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/instrumentação , Doenças da Medula Espinal/diagnóstico , Medula Espinal/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/instrumentação , Desenho de Equipamento , Humanos , Imageamento Tridimensional/instrumentação , Segurança do Paciente , Imagens de Fantasmas , Ondas de Rádio , Sensibilidade e Especificidade
18.
AJNR Am J Neuroradiol ; 42(9): 1727-1734, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34326104

RESUMO

BACKGROUND AND PURPOSE: Multi-parametric MRI, provides a variety of biomarkers sensitive to white matter integrity, However, spinal cord MRI data in pediatrics is rare compared to adults. The purpose of this work was 3-fold: 1) to develop a processing pipeline for atlas-based generation of the typically developing pediatric spinal cord WM tracts, 2) to derive atlas-based normative values of the DTI indices for various WM pathways, and 3) to investigate age-related changes in the obtained normative DTI indices along the extracted tracts. MATERIALS AND METHODS: DTI scans of 30 typically developing subjects (age range, 6-16 years) were acquired on a 3T MR imaging scanner. The data were registered to the PAM50 template in the Spinal Cord Toolbox. Next, the DTI indices for various WM regions were extracted at a single section centered at the C3 vertebral body in all the 30 subjects. Finally, an ANOVA test was performed to examine the effects of the following: 1) laterality, 2) functionality, and 3) age, with DTI-derived indices in 34 extracted WM regions. RESULTS: A postprocessing pipeline was developed and validated to delineate pediatric spinal cord WM tracts. The results of ANOVA on fractional anisotropy values showed no effect for laterality (P = .72) but an effect for functionality (P < .001) when comparing the 30 primary WM labels. There was a significant (P < .05) effect of age and maturity of the left spinothalamic tract on mean diffusivity, radial diffusivity, and axial diffusivity values. CONCLUSIONS: The proposed automated pipeline in this study incorporates unique postprocessing steps followed by template registration and quantification of DTI metrics using atlas-based regions. This method eliminates the need for manual ROI analysis of WM tracts and, therefore, increases the accuracy and speed of the measurements.


Assuntos
Pediatria , Substância Branca , Adolescente , Adulto , Anisotropia , Criança , Imagem de Tensor de Difusão , Humanos , Medula Espinal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
19.
Neuroimage ; 50(3): 1074-84, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20060914

RESUMO

Functional MRI of the spinal cord is challenging due to the small cross section of the cord and high level of physiological noise. Though blood oxygenation level-dependent (BOLD) contrast has been used to study specific responses of the spinal cord to various stimuli, it has not been demonstrated using a controlled stimulus. In this paper, we use hypercapnic manipulation to study the sensitivity and specificity of functional MRI in the human cervical spinal cord. Simultaneous MR imaging in the brain and spinal cord was performed for direct comparison with the brain, in which responses to hypercapnia have been more extensively characterized. Original contributions include: (i) prospectively controlled hypercapnic changes in end-tidal PCO(2), (ii) simultaneous recording of BOLD responses in the brain and spinal cord, and (iii) generation of statistical maps of BOLD responses throughout the brain and spinal cord, taking into account physiological noise sources. Results showed significant responses in all subjects both in the brain and the spinal cord. In anatomically-defined regions of interest, mean percent changes were 0.6% in the spinal cord and 1% in the brain. Analysis of residual variance demonstrated significantly larger contribution of physiological noise in the spinal cord (P<0.005). To obtain more reliable results from fMRI in the spinal cord, it will be necessary to improve sensitivity through the use of highly parallelized coil arrays and better modeling of physiological noise. Finely, we believe that the use of controlled global stimuli, such as hypercapnia, will help assess the effectiveness of new acquisition techniques.


Assuntos
Hipercapnia/fisiopatologia , Medula Espinal/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Mapeamento Encefálico , Dióxido de Carbono/sangue , Vértebras Cervicais , Feminino , Humanos , Hipercapnia/sangue , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Medula Espinal/irrigação sanguínea , Fatores de Tempo , Adulto Jovem
20.
Neuroimage ; 44(2): 328-39, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18938251

RESUMO

Functional magnetic resonance imaging (fMRI) of the spinal cord has been the subject of intense research for the last ten years. An important motivation for this technique is its ability to detect non-invasively neuronal activity in the spinal cord related to sensorimotor functions in various conditions, such as after spinal cord lesions. Although promising results of spinal cord fMRI have arisen from previous studies, the poor reproducibility of BOLD activations and their characteristics remain a major drawback. In the present study we investigated the reproducibility of BOLD fMRI in the spinal cord of cats (N=9) by repeating the same stimulation protocol over a long period (approximately 2 h). Cats were anaesthetized with ketamine, and spinal cord activity was induced by electrical stimulation of cutaneous nerves of the hind limbs. As a result, task-related signals were detected in most cats with relatively good spatial specificity. However, BOLD response significantly varied within and between cats. This variability was notably attributed to the moderate intensity of the stimulus producing a low amplitude haemodynamic response, variation in end-tidal CO(2) during the session, low signal-to-noise ratio (SNR) in spinal fMRI time series and animal-specific vascular anatomy. Original contributions of the present study are: (i) first spinal fMRI experiment in ketamine-anaesthetized animals, (ii) extensive study of intra- and inter-subject variability of activation, (iii) characterisation of static and temporal SNR in the spinal cord and (iv) investigation on the impact of CO(2) end-tidal level on the amplitude of BOLD response.


Assuntos
Estimulação Elétrica , Potenciais Evocados/fisiologia , Membro Posterior/inervação , Membro Posterior/fisiologia , Imageamento por Ressonância Magnética/métodos , Medula Espinal/fisiologia , Anestésicos/administração & dosagem , Animais , Gatos , Membro Posterior/efeitos dos fármacos , Ketamina/administração & dosagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Medula Espinal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa