Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Epilepsy Behav ; 155: 109800, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657485

RESUMO

Epilepsy is a neurological disease characterized by spontaneous and recurrent seizures. Epileptic seizures can be initiated and facilitated by inflammatory mechanisms. As the dysregulation of the immune system would be involved in epileptogenesis, it is suggested that anti-inflammatory medications could impact epileptic seizures. These medications could potentially have a side effect by altering the structure and composition of the intestinal microbiota. These changes can disrupt microbial homeostasis, leading to dysbiosis and potentially exacerbating intestinal inflammation. We hypothesize that prednisolone may affect the development of epileptic seizures, potentially influencing the diversity of the intestinal microbiota and the regulation of pro-inflammatory cytokines in intestinal tissue. This study aimed to evaluate the effects of prednisolone treatment on epileptic seizures and investigate the effect of this drug on the bacterial diversity of the intestinal microbiota and markers of inflammatory processes in intestinal tissue. We used Male Wistar rat littermates (n = 31, 90-day-old) divided into four groups: positive control treated with 2 mg/kg of diazepam (n = 6), negative control treated with 0.9 g% sodium chloride (n = 6), and the remaining two groups were subjected to treatment with prednisolone, with one receiving 1 mg/kg (n = 9) and the other 5 mg/kg (n = 10). All administrations were performed intraperitoneally (i.p.) over 14 days. To induce the chronic model of epileptic seizures, we administered pentylenetetrazole (PTZ) 25 mg/kg i.p. on alternate days. Seizure latency (n = 6 - 10) and TNF-α and IL-1ß concentrations from intestinal samples were measured by ELISA (n = 6 per group), and intestinal microbiota was evaluated with intergenic ribosomal RNA (rRNA) spacer (RISA) analysis (n = 6 per group). The prednisolone treatment demonstrated an increase in the latency time of epileptic seizures and TNF-α and IL-1ß concentrations compared to controls. There was no statistically significant difference in intestinal microbiota diversity between the different treatments. However, there was a strong positive correlation between microbial diversity and TNF-α and IL-1ß concentrations. The administration of prednisolone yields comparable results to diazepam on increasing latency between seizures, exhibiting promise for its use in clinical studies. Although there were no changes in intestinal microbial diversity, the increase in the TNF-α and IL-1ß cytokines in intestinal tissue may be linked to immune system signaling pathways involving the intestinal microbiota. Additional research is necessary to unravel the intricacies of these pathways and to understand their implications for clinical practice.


Assuntos
Citocinas , Modelos Animais de Doenças , Epilepsia , Microbioma Gastrointestinal , Excitação Neurológica , Prednisolona , Ratos Wistar , Animais , Prednisolona/farmacologia , Prednisolona/uso terapêutico , Masculino , Citocinas/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Excitação Neurológica/efeitos dos fármacos , Ratos , Epilepsia/tratamento farmacológico , Epilepsia/microbiologia , Anti-Inflamatórios/farmacologia
2.
Microb Pathog ; 163: 105376, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34974121

RESUMO

The gut microbiota is a complex community composed by several microorganisms that interact in the maintenance of homeostasis and contribute to physiological processes, including brain function. The relationship of the taxonomic composition of the gut microbiota with neurological diseases such as autism, Parkinson's, Alzheimer's, anxiety, and depression is widely recognized. The immune system is an important intermediary between the gut microbiota and the central nervous system, being one of the communication routes of the gut-brain axis. Although the complexity of the relationship between inflammation and epilepsy has not yet been elucidated, inflammatory processes are similar in many ways to the consequences of dysbiosis and contribute to disease progression. This study aimed to analyze the taxonomic composition of the gut microbiota of rats treated with prednisolone in a kindling model of epilepsy. Male Wistar rats (90 days, n = 24) divided into four experimental groups: sodium chloride solution 0.9 g%, diazepam 2 mg/kg, prednisolone 1 mg/kg, and prednisolone 5 mg/kg administered intraperitoneally (i.p.) for 14 days. The kindling model was induced by pentylenetetrazole (PTZ) 25 mg/kg i.p. on alternate days. The taxonomic profile was established by applying metagenomic DNA sequencing. There was no change in alpha diversity, and the composition of the gut microbiota between prednisolone and diazepam was similar. The significant increase in Verrucomicrobia, Saccharibacteria, and Actinobacteria may be related to the protective activity against seizures and inflammatory processes that cause some cases of epilepsy. Further studies are needed to investigate the functional influence that these species have on epilepsy and the inflammatory processes that trigger it.


Assuntos
Microbioma Gastrointestinal , Pentilenotetrazol , Animais , Masculino , Prednisolona , Ratos , Ratos Wistar , Convulsões/induzido quimicamente
3.
Arch Biochem Biophys ; 709: 108970, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34181873

RESUMO

Glutaric acidemia type 1 (GA1) is caused by glutaryl-CoA dehydrogenase deficiency that leads to a blockage in the metabolic route of the amino acids lysine and tryptophan and subsequent accumulation of glutaric acid (GA), 3-hydroxyglutaric acids and glutarylcarnitine (C5DC). Patients predominantly manifest neurological symptoms, associated with acute striatal degeneration, as well as progressive cortical and striatum injury whose pathogenesis is not yet fully established. Current treatment includes protein/lysine restriction and l-carnitine supplementation of (L-car). The aim of this work was to evaluate behavior parameters and pro-inflammatory factors (cytokines IL-1ß, TNF-α and cathepsin-D levels), as well as the anti-inflammatory cytokine IL10 in striatum of knockout mice (Gcdh-/-) and wild type (WT) mice submitted to a normal or a high Lys diet. The potential protective effects of L-car treatment on these parameters were also evaluated. Gcdh-/- mice showed behavioral changes, including lower motor activity (decreased number of crossings) and exploratory activity (reduced number of rearings). Also, Gcdh-/- mice had significantly higher concentrations of glutarylcarnitine (C5DC) in blood and cathepsin-D (CATD), interleukin IL-1ß and tumor factor necrosis alpha (TNF-α) in striatum than WT mice. Noteworthy, L-car treatment prevented most behavioral alterations, normalized CATD levels and attenuated IL-1ß levels in striatum of Gcdh-/- mice. Finally, IL-1ß was positively correlated with CATD and C5DC levels and L-car was negatively correlated with CATD. Our results demonstrate behavioral changes and a pro-inflammatory status in striatum of the animal model of GA1 and, most importantly, L-car showed important protective effects on these alterations.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Encefalopatias Metabólicas/tratamento farmacológico , Carnitina/uso terapêutico , Glutaril-CoA Desidrogenase/deficiência , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Animais , Encefalopatias Metabólicas/genética , Carnitina/análogos & derivados , Carnitina/metabolismo , Catepsina D/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Glutaril-CoA Desidrogenase/genética , Asseio Animal/efeitos dos fármacos , Inflamação/genética , Interleucina-1beta/metabolismo , Locomoção/efeitos dos fármacos , Lisina/farmacologia , Camundongos Knockout , Teste de Campo Aberto/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
4.
J Cell Biochem ; 119(1): 1223-1233, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28722826

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited disease characterized by progressive inflammatory demyelization in the brain, adrenal insufficiency, and an abnormal accumulation of very long chain fatty acids (VLCFA) in tissue and body fluids. Considering that inflammation might be involved in pathophysiology of X-ALD, we aimed to investigate pro- and anti-inflammatory cytokines in plasma from three different male phenotypes (CCER, AMN, and asymptomatic individuals). Our results showed that asymptomatic patients presented increased levels of pro-inflammatory cytokines IL-1ß, IL-2, IL-8, and TNF-α and the last one was also higher in AMN phenotype. Besides, asymptomatic patients presented higher levels of anti-inflammatory cytokines IL-4 and IL-10. AMN patients presented higher levels of IL-2, IL-5, and IL-4. We might hypothesize that inflammation in X-ALD is related to plasmatic VLCFA concentration, since there were positive correlations between C26:0 plasmatic levels and pro-inflammatory cytokines in asymptomatic and AMN patients and negative correlation between anti-inflammatory cytokine and C24:0/C22:0 ratio in AMN patients. The present work yields experimental evidence that there is an inflammatory imbalance associated Th1, (IL-2, IL-6, and IFN-γ), Th2 (IL-4 and IL-10), and macrophages response (TNF-α and IL-1ß) in the periphery of asymptomatic and AMN patients, and there is correlation between VLCFA plasmatic levels and inflammatory mediators in X-ALD. Furthermore, we might also speculate that the increase of plasmatic cytokines in asymptomatic patients could be considered an early biomarker of brain damage and maybe also a predictor of disease progression.


Assuntos
Adrenoleucodistrofia/imunologia , Citocinas/sangue , Macrófagos/imunologia , Células Th1/imunologia , Adolescente , Adrenoleucodistrofia/sangue , Adulto , Criança , Pré-Escolar , Ácidos Graxos/sangue , Humanos , Lactente , Interleucina-10/sangue , Interleucina-1beta/sangue , Interleucina-2/sangue , Interleucina-4/sangue , Interleucina-5/sangue , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
5.
Cell Mol Neurobiol ; 38(8): 1505-1516, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30302628

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited neurometabolic disorder caused by disfunction of the ABCD1 gene, which encodes a peroxisomal protein responsible for the transport of the very long-chain fatty acids from the cytosol into the peroxisome, to undergo ß-oxidation. The mainly accumulated saturated fatty acids are hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) in tissues and body fluids. This peroxisomal disorder occurs in at least 1 out of 20,000 births. Considering that pathophysiology of this disease is not well characterized yet, and glial cells are widely used in studies of protective mechanisms against neuronal oxidative stress, we investigated oxidative damages and inflammatory effects of vesicles containing lecithin and C26:0, as well as the protection conferred by N-acetyl-L-cysteine (NAC), trolox (TRO), and rosuvastatin (RSV) was assessed. It was verified that glial cells exposed to C26:0 presented oxidative DNA damage (measured by comet assay and endonuclease III repair enzyme), enzymatic oxidative imbalance (high catalase activity), nitrative stress [increased nitric oxide (NO) levels], inflammation [high Interleukin-1beta (IL-1ß) levels], and induced lipid peroxidation (increased isoprostane levels) compared to native glial cells without C26:0 exposure. Furthermore, NAC, TRO, and RSV were capable to mitigate some damages caused by the C26:0 in glial cells. The present work yields experimental evidence that inflammation, oxidative, and nitrative stress may be induced by hexacosanoic acid, the main accumulated metabolite in X-ALD, and that antioxidants might be considered as an adjuvant therapy for this severe neurometabolic disease.


Assuntos
Acetilcisteína/farmacologia , Cromanos/farmacologia , Ácidos Graxos/farmacologia , Inflamação/patologia , Neuroglia/patologia , Estresse Nitrosativo , Estresse Oxidativo , Rosuvastatina Cálcica/farmacologia , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Dano ao DNA , Interleucina-1beta/metabolismo , Isoprostanos/metabolismo , Neuroglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Nitratos/metabolismo , Nitritos/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
6.
Biochim Biophys Acta ; 1852(5): 1012-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25701642

RESUMO

Mucopolysaccharidosis type IVA (MPS IVA) is an inborn error of glycosaminoglycan (GAG) catabolism due to the deficient activity of N-acetylgalactosamine-6-sulfate sulfatase that leads to accumulation of the keratan sulfate and chondroitin 6-sulfate in body fluids and in lysosomes. The pathophysiology of this lysosomal storage disorder is not completely understood. The aim of this study was to investigate oxidative stress parameters, pro-inflammatory cytokine and GAG levels in MPS IVA patients. We analyzed urine and blood samples from patients under ERT (n=17) and healthy age-matched controls (n=10-15). Patients presented a reduction of antioxidant defense levels, assessed by a decrease in glutathione content and by an increase in superoxide dismutase activity in erythrocytes. Concerning lipid and protein damage, it was verified increased urine isoprostanes and di-tyrosine levels and decreased plasma sulfhydryl groups in MPS IVA patients compared to controls. MPS IVA patients showed higher DNA damage than control group and this damage had an oxidative origin in both pyrimidine and purine bases. Interleukin 6 was increased in patients and presented an inverse correlation with GSH levels, showing a possible link between inflammation and oxidative stress in MPS IVA disease. The data presented suggest that pro-inflammatory and pro-oxidant states occur in MPS IVA patients even under ERT. Taking these results into account, supplementation of antioxidants in combination with ERT can be a tentative therapeutic approach with the purpose of improving the patient's quality of life. To the best of our knowledge, this is the first study relating MPS IVA patients with oxidative stress.


Assuntos
Condroitina Sulfatases/uso terapêutico , Terapia de Reposição de Enzimas/métodos , Inflamação/tratamento farmacológico , Mucopolissacaridose IV/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Adolescente , Adulto , Proteínas Sanguíneas/análise , Criança , Creatinina/urina , Citocinas/sangue , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Glutationa/sangue , Glicosaminoglicanos/urina , Humanos , Inflamação/sangue , Inflamação/urina , Isoprostanos/urina , Masculino , Mucopolissacaridose IV/sangue , Mucopolissacaridose IV/urina , Peroxidase/sangue , Superóxido Dismutase/sangue , Resultado do Tratamento , Tirosina/análogos & derivados , Tirosina/urina , Adulto Jovem
7.
Cell Mol Neurobiol ; 35(6): 899-911, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25805165

RESUMO

Cystathionine-ß-synthase (CBS) deficiency is the main cause of homocystinuria. Homocysteine (Hcy), methionine, and other metabolites of Hcy accumulate in the body of affected patients. Despite the fact that thromboembolism represents the major cause of morbidity in CBS-deficient patients, the mechanisms of cardiovascular alterations found in homocystinuria remain unclear. In this work, we evaluated the lipid and inflammatory profile, oxidative protein damage, and the activities of the enzymes paraoxonase (PON1) and butyrylcholinesterase (BuChE) in plasma of CBS-deficient patients at diagnosis and during the treatment (protein-restricted diet supplemented with pyridoxine, folic acid, betaine, and vitamin B12). We also investigated the effect of folic acid and vitamin B12 on these parameters. We found a significant decrease in HDL cholesterol and apolipoprotein A1 (ApoA-1) levels, as well as in PON1 activity in both untreated and treated CBS-deficient patients when compared to controls. BuChE activity and IL-6 levels were significantly increased in not treated patients. Furthermore, significant positive correlations between PON1 activity and sulphydryl groups and between IL-6 levels and carbonyl content were verified. Moreover, vitamin B12 was positively correlated with PON1 and ApoA-1 levels, while folic acid was inversely correlated with total Hcy concentration, demonstrating the importance of this treatment. Our results also demonstrated that CBS-deficient patients presented important alterations in biochemical parameters, possibly caused by the metabolites of Hcy, as well as by oxidative stress, and that the adequate adherence to the treatment is essential to revert or prevent these alterations.


Assuntos
Arildialquilfosfatase/sangue , Butirilcolinesterase/sangue , Homocistinúria/sangue , Lipídeos/sangue , Oxidantes/sangue , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Cistationina beta-Sintase/deficiência , Cistationina beta-Sintase/genética , Feminino , Ácido Fólico/sangue , Ácido Fólico/fisiologia , Homocistinúria/genética , Humanos , Masculino , Estresse Oxidativo/fisiologia , Vitamina B 12/sangue , Vitamina B 12/fisiologia , Adulto Jovem
8.
Nicotine Tob Res ; 17(12): 1442-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25744965

RESUMO

INTRODUCTION: Alcohol is frequently used in combination with tobacco and few studies explore interactions between these two drugs of abuse. Here, we evaluated the effect of chronic alcohol administration and concomitant exposure to tobacco smoke on long-term memory and on cell proliferation in the hippocampus of rats. METHODS: Forty male Wistar rats were assigned to four groups and treated with alcohol (2g/kg by gavage) and/or exposed to tobacco smoke (from six cigarettes, by inhalation) twice a day (at 9:00 AM and 2:00 PM) for 30 days. Long-term memory was evaluated in the inhibitory avoidance test and hippocampal cell proliferation was analyzed for bromodeoxyuridine immunohistochemistry. RESULTS: Our results showed that alcohol, tobacco smoke, or their combination improved the long-term memory evaluated by the memory index in rats. Moreover, alcohol and tobacco coadministration decreased bromodeoxyuridine-labeled cells by 60% when compared to the control group, while alcohol treatment decreased labeled cells by 40%. The tobacco group showed a nonsignificant 26% decrease in labeled cells compared to the control group. CONCLUSIONS: Chronic alcohol and tobacco coadministration improves the long-term memory in rats in the inhibitory avoidance test. However, coadministration decreases the cell proliferation in the hippocampus of rats, suggesting a deleterious effect by the combined use of these drugs of abuse.


Assuntos
Proliferação de Células/efeitos dos fármacos , Etanol/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Memória de Longo Prazo/efeitos dos fármacos , Fumar/efeitos adversos , Administração por Inalação , Animais , Proliferação de Células/fisiologia , Hipocampo/fisiologia , Masculino , Memória de Longo Prazo/fisiologia , Ratos , Ratos Wistar , Nicotiana
9.
Metab Brain Dis ; 30(5): 1167-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26002427

RESUMO

Maple Syrup Urine Disease (MSUD) is a metabolic disorder caused by a severe deficiency of the branched-chain α-keto acid dehydrogenase complex activity which leads to the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine and valine and their respective α-keto-acids in body fluids. The main symptomatology presented by MSUD patients includes ketoacidosis, failure to thrive, poor feeding, apnea, ataxia, seizures, coma, psychomotor delay and mental retardation, but, the neurological pathophysiologic mechanisms are poorly understood. The treatment consists of a low protein diet and a semi-synthetic formula restricted in BCAA and supplemented with essential amino acids. It was verified that MSUD patients present L-carnitine (L-car) deficiency and this compound has demonstrated an antioxidant and anti-inflammatory role in metabolic diseases. Since there are no studies in the literature reporting the inflammatory profile of MSUD patients and the L-car role on the inflammatory response in this disorder, the present study evaluates the effect of L-car supplementation on plasma inflammatory cytokines interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interferon-gamma (INF-É£), and a correlation with malondialdehyde (MDA), as a marker of oxidative damage, and with free L-car plasma levels in treated MSUD patients. Significant increases of IL-1ß, IL-6, and INF-É£ were observed before the treatment with L-car. Moreover, there is a negative correlation between all cytokines tested and L-car concentrations and a positive correlation among the MDA content and IL-1ß and IL-6 values. Our data show that L-car supplementation can improve cellular defense against inflammation and oxidative stress in MSUD patients and may represent an additional therapeutic approach to the patients affected by this disease.


Assuntos
Carnitina/uso terapêutico , Suplementos Nutricionais , Mediadores da Inflamação/sangue , Doença da Urina de Xarope de Bordo/sangue , Doença da Urina de Xarope de Bordo/tratamento farmacológico , Criança , Pré-Escolar , Feminino , Humanos , Inflamação/sangue , Inflamação/tratamento farmacológico , Masculino
10.
Neurol Res ; 46(8): 717-726, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38679045

RESUMO

Introduction: The close relationship between inflammatory processes and epileptic seizures is already known, although the exact pathophysiological mechanism is unclear. In this study, the anticonvulsant capacity of piroxicam, an anti-inflammatory drug, was evaluated. A rat pentylenetetrazole kindling model was used.Methods: Male Wistar rats, 8-9 weeks old, received piroxicam (0.15 and 0.30 mg/kg), diazepam (2 mg/kg) or saline for 14 days, and PTZ, on alternate days. Intraperitoneal was chosen as the route of administration. The intensity of epileptic seizures was assessed using a modified Racine scale. The open field test and object recognition analysis were performed at the beginning of the study to ensure the safety of the drugs used. At the end of the protocol, the animals were euthanized to measure the levels of inflammatory (TNF-a and IL-6) and anti-inflammatory (IL-10) cytokines in the cortex, hippocampus, and serum.Results:There were no changes in the open field test and object recognition analysis. Piroxicam was found to decrease Racine scale scores at both concentrations. The reported values for IL-6 levels remained steady in all structures, whereas the TNF-alpha level in the cortex was higher in animals treated with piroxicam than in the saline and diazepam subjects. Finally, animals treated with the anti-inflammatory drug presented reduced IL-10 levels in the cortex and hippocampus.onclusions: Using inflammation as a guiding principle, the anticonvulsant effect of PIRO could be associated with the hippocampal circuits, since this structure showed no increase in inflammatory cytokines.


Assuntos
Anticonvulsivantes , Modelos Animais de Doenças , Excitação Neurológica , Piroxicam , Ratos Wistar , Animais , Piroxicam/farmacologia , Masculino , Excitação Neurológica/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Ratos , Pentilenotetrazol , Convulsões/tratamento farmacológico , Citocinas/metabolismo , Diazepam/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Relação Dose-Resposta a Droga , Epilepsia/tratamento farmacológico
11.
Steroids ; 193: 109202, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828350

RESUMO

Epilepsy is a chronic disease characterized by an ongoing predisposition to seizures. Although inflammation has emerged as a crucial factor in the etiology of epilepsy, no approaches to anti-inflammatory treatment have been clinically proven to date. Betamethasone (a corticosteroid drug used in the clinic for its anti-inflammatory and immunosuppressive effects) has never been evaluated in attenuating the intensity of seizures in a kindling animal model of seizures. Using a kindling model in male wistar rats, this study evaluated the effect of betamethasone on the severity of seizures and levels of pro-inflammatory interleukins. Seizures were induced by pentylenetetrazole (30 mg/kg) on alternate days for 15 days. The animals were divided into four groups: a control group treated with saline, another control group treated with diazepam (2 mg/kg), and two groups treated with betamethasone (0.125 and 0.250 mg/kg, respectively). Open field test was conducted. Betamethasone treatments were effective in reducing the intensity of epileptic seizures. There were lower levels of Tumor Necrosis Factor-α and interleukin-1ß in the cortex, compared to the saline group, on the other hand, levels in the hippocampus remained similar to the control groups. There was no change in the levels of interleukin-6 in the evaluated structures. Serum inflammatory mediators remained similar. Lower quantities of inflammatory mediators in the central nervous system may have been the key to the reduced severity of seizures on the Racine scale.


Assuntos
Betametasona , Epilepsia , Ratos , Animais , Masculino , Betametasona/efeitos adversos , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Epilepsia/tratamento farmacológico , Ratos Wistar , Anti-Inflamatórios/uso terapêutico , Mediadores da Inflamação/efeitos adversos , Modelos Animais de Doenças , Anticonvulsivantes/efeitos adversos
12.
Cell Biochem Funct ; 30(4): 315-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22281730

RESUMO

Organochalcogens are extensively produced and employed by industry and agriculture, and the risk of occupational and environmental toxicity to them has been poorly understood. Here, we investigated the acute effect of a new organochalcogen 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one on biochemical and hematological parameters in male Wistar rats. The animals were treated with a single intraperitoneal injection of the organochalcogen at doses of 125, 250 or 500 µg·kg(-1). After 60 min, the animals were sacrificed by decapitation, and the trunk blood was collected for determination of glucose, triglycerides, cholesterol, alanine aminotransferase (ALT), aspartate aminotransferase, lactate dehydrogenase, urea, creatinine, C-reactive protein, red blood cells, hematocrit, hemoglobin and white blood cells (WBC). Our results showed a reduction in cholesterol levels in all treated groups, an increase in ALT activity at doses of 250 and 500 µg·kg(-1), a decrease of hemoglobin and an increase in WBC in animals that received 250 and 500 µg·kg(-1) of the organoselenium. In addition, we observed an increase in neutrophil counts at 125 µg·kg(-1) dose and a decrease at 500 µg·kg(-1) dose. We also verified an increase in lymphocyte counts at the dose of 500 µg·kg(-1). Thus, the present study shows that the acute treatment with this new organochalcogen causes biochemical changes and hematological disorders in male rats.


Assuntos
Doenças Hematológicas/metabolismo , Compostos Organosselênicos/farmacologia , Doença Aguda , Alanina Transaminase/sangue , Animais , Colesterol/sangue , Doenças Hematológicas/patologia , Hemoglobinas/análise , Injeções Intraperitoneais , Contagem de Leucócitos , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Ratos , Ratos Wistar
13.
Epilepsy Res ; 186: 107018, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36126608

RESUMO

Epilepsy is a chronic neurological disorder and there is increasing evidence about the role of inflammation in epileptogenesis. These findings have spurred the search for new immunomodulatory approaches that can improve prognosis. Using an animal model of chemically-induced epileptic seizures, we tested exercise alone as non-pharmacological therapy, and exercise combined with an anti-inflammatory drug. Five groups were used: sedentary, diazepam, aerobic exercise alone, aerobic exercise combined with an anti-inflammatory drug, and naive control. Our goal was to compare the severity of the epileptic seizures between groups as well as seizure latency in a pentylenetetrazole-induced paradigm. Cytokine levels (IL-1ß, TNF-α, and IL-10) were measured. Both exercise groups showed a reduction in seizure severity and lower levels of pro-inflammatory cytokines in the cortex, while the levels of cytokines in the hippocampus remained unaffected.


Assuntos
Epilepsia , Pentilenotetrazol , Animais , Anti-Inflamatórios/efeitos adversos , Citocinas/metabolismo , Diazepam/uso terapêutico , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Exercício Físico , Hipocampo/metabolismo , Interleucina-10 , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo
14.
Neurosci Lett ; 743: 135560, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33359047

RESUMO

Epilepsy is a chronic neurological condition that affects 1%-2% of the world population. Although research about the disease is advancing and a wide variety of drugs is available, about 30 % of patients have refractory epilepsy which cannot be controlled with the most common drugs. This highlights the need for a better understanding of the disorder and new types of treatment for it. Against this backdrop, a growing body of evidence has reported that inflammation may play a role both in the origin and in the progression of seizures. It has shown a tendency to be both the root and the result of epilepsy. This investigation aimed to assess the impact of prednisolone, a steroidal anti-inflammatory drug, in an animal model of pentylenetetrazole (PTZ)-induced seizures, at 1 mg/kg and 5 mg/kg doses. We also examined the degree of seizure severity and the modulation of pro-inflammatory cytokines in the treated animals. Four treatment groups were used (saline, diazepam, prednisolone 1 mg/kg, and prednisolone 5 mg/kg) and, in addition to their own daily treatments, subconvulsant doses of pentylenetetrazole (25 mg/kg) were administered every other day during a test protocol that lasted 14 days. After treatment, the cytokines interleukin 1 beta (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) were measured in the animals' sera, hippocampi, and prefrontal cortices. Animals treated with prednisolone presented less severe seizures than the animals in the saline group, and there was a decrease in pro-inflammatory cytokine levels in central structures, but not peripheral ones. In short, an animal model of chemically-induced epileptic seizures was used, in which the animals were treated with doses of prednisolone, and these animals presented less severe seizures than the negative control group (saline), in addition to showing decreased levels of pro-inflammatory cytokines IL-6, IL-1ß and TNF-α, in the hippocampi and prefrontal cortices, but not the sera.


Assuntos
Anti-Inflamatórios/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Locomoção/efeitos dos fármacos , Pentilenotetrazol/toxicidade , Prednisolona/uso terapêutico , Convulsões/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Mediadores da Inflamação/metabolismo , Locomoção/fisiologia , Masculino , Prednisolona/farmacologia , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/metabolismo , Resultado do Tratamento
15.
J Epilepsy Res ; 11(2): 113-119, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35087719

RESUMO

BACKGROUND AND PURPOSE: Oxidative stress (OS) is defined as an excessive production of reactive oxygen species that cannot be neutralized by the action of antioxidants, but also as an alteration of the cellular redox balance. The relationship between OS and epilepsy is not yet fully understood. The objective of this study was to evaluate the effect of dexamethasone on OS levels and memory in the kindling model induced by pentylenetetrazole. METHODS: The animals were divided in six groups: control group that received no treatment, vehicle group treated with vehicle, diazepam group, and groups treated with dexamethasone (1, 2 and 4 mg/kg). Treated animals received pentylenetetrazole in alternated days for 15 days. Inhibitory avoidance test was conducted in 2 hours and OS was evaluated after animal sacrifice. RESULTS: Regarding the treatment with dexamethasone, there was no significant difference when compared to the control groups in relation to the inhibitory avoidance test. On OS levels, there was a decrease in catalase activity levels in the hippocampus and an increase in thiobarbituric acid reactive substances and glutathione peroxidase levels in the hippocampus. CONCLUSIONS: The anticonvulsant effect of dexametasone remains uncertain. Immunological mechanisms, with the release of cytokines and inflammatory mediators, seem to be the key to this process. The mechanisms that generate OS are probably related to the anticonvulsant effects found.

16.
Cell Mol Neurobiol ; 30(7): 1135-42, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20668930

RESUMO

Organotellurium compounds have been synthesized since 1840, but pharmacological and toxicological studies about them are still incipient. Therefore, the objective of this study was to verify the effect of acute administration of the organochalcogen 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on some parameters of oxidative stress in the brain of 30-day-old rats. Animals were treated intraperitoneally with a single dose of the organotellurium (125, 250, or 500 µg/kg body weight) and sacrificed 60 min after the injection. The cerebral cortex, the hippocampus, and the cerebellum were dissected and homogenized in KCl. Afterward, thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD), nitric oxide (NO) formation, and hydroxyl radical production were measured in the brain. The organotellurium enhanced TBARS in the cerebral cortex and the hippocampus, and increased protein damage (carbonyl) in the cerebral cortex and the cerebellum. In contrast, the compound provoked a reduced loss of thiol groups measured by the sulfhydryl assay in all the tissues studied. Furthermore, the activity of the antioxidant enzyme CAT was reduced by the organochalcogen in the cerebral cortex and the cerebellum, and the activity of SOD was inhibited in all the brain tissues. Moreover, NO production was increased in the cerebral cortex and the cerebellum by this organochalcogen, and hydroxyl radical formation was also enhanced in the cerebral cortex. Our findings indicate that this organotellurium compound induces oxidative stress in the brain of rats, corroborating that this tissue is a potential target for organochalcogen action.


Assuntos
Cerebelo/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Catalase/metabolismo , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
17.
J Neuroimmunol ; 325: 92-98, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30316679

RESUMO

The objective of this study was to evaluate the effect of dexamethasone, on the severity of seizures and levels of pro-inflammatory interleukins in animals with kindling model induced by pentylenetetrazole (20 mg/kg) in alternated days for 15 days of treatment. The animals were divided into five groups: control group given saline, a group treated with diazepam (2 mg/kg) and groups treated with dexamethasone (1, 2 and 4 mg/kg). Open field test was conducted. The treatment with dexamethasone decreased the severity of seizures, also decreased TNF-alpha and Interleukin 1 beta levels in the hippocampus and TNF-alpha level in the serum.


Assuntos
Dexametasona/uso terapêutico , Modelos Animais de Doenças , Mediadores da Inflamação/antagonistas & inibidores , Excitação Neurológica/efeitos dos fármacos , Convulsões/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dexametasona/farmacologia , Mediadores da Inflamação/metabolismo , Excitação Neurológica/metabolismo , Masculino , Ratos , Ratos Wistar , Convulsões/metabolismo , Resultado do Tratamento
18.
Curr Neurovasc Res ; 4(4): 235-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18045148

RESUMO

Many studies indicate a dissociation between two forms of orientation: allocentric orientation, in which an organism orients on the basis of cues external to the organism, and egocentric spatial orientation (ESO) by which an organism orients on the basis of proprioceptive information. While allocentric orientation is mediated primarily by the hippocampus and its afferent and efferent connections, ESO is mediated by the prefronto-striatal system. Striatal lesions as well as classical neuroleptics, which block dopamine receptors, act through the prefronto-striatal system and impair ESO. The purpose of the present study was to determine the effects of the atypical antipsychotics clozapine, olanzapine and risperidone which are believed to exert its antipsychotic effects mainly by dopaminergic, cholinergic and serotonergic mechanisms. A delayed-two-alternative-choice-task, under conditions that required ESO and at the same time excluded allocentric spatial orientation was used. Clozapine and olanzapine treated rats made more errors than risperidone treated rats in the delayed alternation in comparison with the controls. Motor abilities were not impaired by any of the drugs. Thus, with regard to the delayed alternation requiring ESO, clozapine and olanzapine but not risperidone affects the prefronto-striatal system in a similar way as classical neuroleptics does.


Assuntos
Antipsicóticos/farmacologia , Benzodiazepinas/farmacologia , Clozapina/farmacologia , Antagonistas de Dopamina/farmacologia , Neostriado/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Risperidona/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia , Percepção Espacial/efeitos dos fármacos , Análise de Variância , Animais , Comportamento de Escolha/efeitos dos fármacos , Sinais (Psicologia) , Masculino , Olanzapina , Orientação/efeitos dos fármacos , Ratos , Ratos Long-Evans
19.
Curr Neurovasc Res ; 4(3): 184-93, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17691972

RESUMO

Thyroid hormones (THs), including triiodothyronine (T3) and tetraiodothyronine (T4), are recognized as key metabolic hormones of the body. THs are essential for normal maturation and function of the mammalian central nervous system (CNS) and its deficiency, during a critical period of development, profoundly affects cognitive function. Sodium-potassium adenosine 5'-triphosphatase (Na(+), K(+)-ATPase) is a crucial enzyme responsible for the active transport of sodium and potassium ions in the CNS necessary to maintain the ionic gradient for neuronal excitability. Studies suggest that Na(+), K(+)-ATPase might play a role on memory formation. Moreover, THs were proposed to stimulate Na(+), K(+)-ATPase activity in the heart of some species. In this work we investigated the effect of a chronic administration of L-thyroxine (L-T4) or propylthiouracil (PTU), an antithyroid drug, on some behavioral paradigms: inhibitory avoidance task, open field task, plus maze and Y-maze, and on the activity of Na(+), K(+)-ATPase in the rat parietal cortex and hippocampus. By using treatments which have shown to induce alterations in THs levels similar to those found in hyperthyroid and hypothyroid patients, we aimed to understand the effect of an altered hyperthyroid and hypothyroid state on learning and memory and on the activity of Na(+), K(+)-ATPase. Our results showed that a hyper and hypothyroid state can alter animal behavior and they also might indicate an effect of THs on learning and memory.


Assuntos
Encéfalo/efeitos dos fármacos , Memória/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Hormônios Tireóideos/farmacologia , Análise de Variância , Animais , Antimetabólitos/farmacologia , Comportamento Animal , Encéfalo/citologia , Encéfalo/enzimologia , Esquema de Medicação , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Propiltiouracila/farmacologia , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Estatísticas não Paramétricas , Fatores de Tempo
20.
Curr Neurovasc Res ; 4(4): 259-67, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18045151

RESUMO

Thyroid hormones (THs) have a relevant action on brain development and maintenance. By using an acute treatment to induce a hyperthyroid animal model, we aimed at investigating the effect of an altered THs levels on learning and memory and on the activity of Na(+), K(+)-ATPase in the rat brain. Our results have shown that the acute treatment with L-T4 did not alter the retrieval of the inhibitory avoidance task, but had a significant effect on the elevated plus maze and on open-field performance in rats. We suggest that animals subjected to L-T4 administration improved the habituation to a novel environment as well as a better evaluation of a dangerous environment, respectively. Na(+), K(+)-ATPase activity is increased in parietal cortex (30%), but it is not altered in hippocampus in L-T4 treated group. These both brain structures are involved in memory processing and it was previously demonstrated that there is a double dissociation between them for spatial location information, perceptual and episodic memory. We propose the hypothesis that this increase of Na(+), K(+)-ATPase activity in parietal cortex may be correlated to our results in behavior tests, which suggest a role of THs as well as of the Na(+), K(+)-ATPase in the cognitive process.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/enzimologia , Habituação Psicofisiológica/efeitos dos fármacos , Memória/efeitos dos fármacos , Assunção de Riscos , ATPase Trocadora de Sódio-Potássio/metabolismo , Tiroxina/farmacologia , Animais , Ansiedade/psicologia , Aprendizagem da Esquiva/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Masculino , Atividade Motora/efeitos dos fármacos , Lobo Parietal/efeitos dos fármacos , Lobo Parietal/enzimologia , Ratos , Ratos Wistar , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/enzimologia , Hormônios Tireóideos/sangue , Tiroxina/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa