Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell ; 138(3): 525-36, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19665974

RESUMO

Modulation of intracellular chloride concentration ([Cl(-)](i)) plays a fundamental role in cell volume regulation and neuronal response to GABA. Cl(-) exit via K-Cl cotransporters (KCCs) is a major determinant of [Cl(-)](I); however, mechanisms governing KCC activities are poorly understood. We identified two sites in KCC3 that are rapidly dephosphorylated in hypotonic conditions in cultured cells and human red blood cells in parallel with increased transport activity. Alanine substitutions at these sites result in constitutively active cotransport. These sites are highly phosphorylated in plasma membrane KCC3 in isotonic conditions, suggesting that dephosphorylation increases KCC3's intrinsic transport activity. Reduction of WNK1 expression via RNA interference reduces phosphorylation at these sites. Homologous sites are phosphorylated in all human KCCs. KCC2 is partially phosphorylated in neonatal mouse brain and dephosphorylated in parallel with KCC2 activation. These findings provide insight into regulation of [Cl(-)](i) and have implications for control of cell volume and neuronal function.


Assuntos
Simportadores/química , Simportadores/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Humanos , Camundongos , Dados de Sequência Molecular , Fosforilação , Alinhamento de Sequência , Cotransportadores de K e Cl-
2.
J Neurosci ; 36(29): 7613-27, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27445140

RESUMO

UNLABELLED: Successful addiction treatment depends on maintaining long-term abstinence, making relapse prevention an essential therapeutic goal. However, exposure to environmental cues associated with drug use often thwarts abstinence efforts by triggering drug using memories that drive craving and relapse. We sought to develop a dual approach for weakening cocaine memories through phosphoproteomic identification of targets regulated in opposite directions by memory extinction compared with reconsolidation in male Sprague-Dawley rats that had been trained to self-administer cocaine paired with an audiovisual cue. We discovered a novel, inversely regulated, memory-dependent phosphorylation event on calcium-calmodulin-dependent kinase II α (CaMKIIα) at serine (S)331. Correspondingly, extinction-associated S331 phosphorylation inhibited CaMKIIα activity. Intra-basolateral amygdala inhibition of CaMKII promoted memory extinction and disrupted reconsolidation, leading to a reduction in subsequent cue-induced reinstatement. CaMKII inhibition had no effect if the memory was neither retrieved nor extinguished. Therefore, inhibition of CaMKII represents a novel mechanism for memory-based addiction treatment that leverages both extinction enhancement and reconsolidation disruption to reduce relapse-like behavior. SIGNIFICANCE STATEMENT: Preventing relapse to drug use is an important goal for the successful treatment of addictive disorders. Relapse-prevention therapies attempt to interfere with drug-associated memories, but are often hindered by unintentional memory strengthening. In this study, we identify phosphorylation events that are bidirectionally regulated by the reconsolidation versus extinction of a cocaine-associated memory, including a novel site on CaMKIIα. Additionally, using a rodent model of addiction, we show that CaMKII inhibition in the amygdala can reduce relapse-like behavior. Together, our data supports the existence of mechanisms that can be used to enhance current strategies for addiction treatment.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Memória/efeitos dos fármacos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Sinais (Psicologia) , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Proteômica , Ratos , Ratos Sprague-Dawley , Autoadministração , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
3.
J Proteome Res ; 16(2): 945-957, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27990823

RESUMO

Detection of differentially abundant proteins in label-free quantitative shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments requires a series of computational steps that identify and quantify LC-MS features. It also requires statistical analyses that distinguish systematic changes in abundance between conditions from artifacts of biological and technical variation. The 2015 study of the Proteome Informatics Research Group (iPRG) of the Association of Biomolecular Resource Facilities (ABRF) aimed to evaluate the effects of the statistical analysis on the accuracy of the results. The study used LC-tandem mass spectra acquired from a controlled mixture, and made the data available to anonymous volunteer participants. The participants used methods of their choice to detect differentially abundant proteins, estimate the associated fold changes, and characterize the uncertainty of the results. The study found that multiple strategies (including the use of spectral counts versus peak intensities, and various software tools) could lead to accurate results, and that the performance was primarily determined by the analysts' expertise. This manuscript summarizes the outcome of the study, and provides representative examples of good computational and statistical practice. The data set generated as part of this study is publicly available.


Assuntos
Cromatografia Líquida/normas , Ensaio de Proficiência Laboratorial , Proteoma/isolamento & purificação , Proteômica/normas , Espectrometria de Massas em Tandem/normas , Interpretação Estatística de Dados , Humanos , Competência Profissional , Proteoma/normas , Proteômica/instrumentação , Proteômica/métodos , Reprodutibilidade dos Testes , Incerteza
4.
Circ Res ; 116(10): 1670-9, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25801896

RESUMO

RATIONALE: Early graft inflammation enhances both acute and chronic rejection of heart transplants, but it is unclear how this inflammation is initiated. OBJECTIVE: To identify specific inflammatory modulators and determine their underlying molecular mechanisms after cardiac transplantation. METHODS AND RESULTS: We used a murine heterotopic cardiac transplant model to identify inflammatory modulators of early graft inflammation. Unbiased mass spectrometric analysis of cardiac tissue before and ≤72 hours after transplantation revealed that 22 proteins including haptoglobin, a known antioxidant, are significantly upregulated in our grafts. Through the use of haptoglobin-deficient mice, we show that 80% of haptoglobin-deficient recipients treated with perioperative administration of the costimulatory blocking agent CTLA4 immunoglobulin exhibited >100-day survival of full major histocompatibility complex mismatched allografts, whereas all similarly treated wild-type recipients rejected their transplants by 21 days after transplantation. We found that haptoglobin modifies the intra-allograft inflammatory milieu by enhancing levels of the inflammatory cytokine interleukin-6 and the chemokine MIP-2 (macrophage inflammatory protein 2) but impair levels of the immunosuppressive cytokine interleukin-10. Haptoglobin also enhances dendritic cell graft recruitment and augments antidonor T-cell responses. Moreover, we confirmed that the protein is present in human cardiac allograft specimens undergoing acute graft rejection. CONCLUSIONS: Our findings provide new insights into the mechanisms of inflammation after cardiac transplantation and suggest that, in contrast to its prior reported antioxidant function in vascular inflammation, haptoglobin is an enhancer of inflammation after cardiac transplantation. Haptoglobin may also be a key component in other sterile inflammatory conditions.


Assuntos
Rejeição de Enxerto/imunologia , Haptoglobinas/imunologia , Transplante de Coração/efeitos adversos , Mediadores da Inflamação/imunologia , Inflamação/imunologia , Miocárdio/imunologia , Abatacepte , Animais , Proliferação de Células , Células Cultivadas , Quimiocina CXCL2/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Rejeição de Enxerto/sangue , Rejeição de Enxerto/genética , Rejeição de Enxerto/patologia , Rejeição de Enxerto/prevenção & controle , Haptoglobinas/metabolismo , Humanos , Imunoconjugados/farmacologia , Imunossupressores/farmacologia , Inflamação/sangue , Inflamação/patologia , Mediadores da Inflamação/sangue , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Ativação Linfocitária , Masculino , Espectrometria de Massas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Miocárdio/metabolismo , Miocárdio/patologia , Proteômica/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo
5.
Proteomics ; 15(17): 2983-98, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25930988

RESUMO

Transmissible encephalopathies (TSEs), such as Creutzfeldt-Jakob disease (CJD) and scrapie, are caused by infectious agents that provoke strain-specific patterns of disease. Misfolded host prion protein (PrP-res amyloid) is believed to be the causal infectious agent. However, particles that are stripped of PrP retain both high infectivity and viral proteins not detectable in uninfected mouse controls. We here detail host proteins bound with FU-CJD agent infectious brain particles by proteomic analysis. More than 98 proteins were differentially regulated, and 56 FU-CJD exclusive proteins were revealed after PrP, GFAP, C1q, ApoE, and other late pathologic response proteins were removed. Stripped FU-CJD particles revealed HSC70 (144× the uninfected control), cyclophilin B, an FU-CJD exclusive protein required by many viruses, and early endosome-membrane pathways known to facilitate viral processing, replication, and spread. Synaptosomal elements including synapsin-2 (at 33×) and AP180 (a major FU-CJD exclusive protein) paralleled the known ultrastructural location of 25 nm virus-like TSE particles and infectivity in synapses. Proteins without apparent viral or neurodegenerative links (copine-3), and others involved in viral-induced protein misfolding and aggregation, were also identified. Human sCJD brain particles contained 146 exclusive proteins, and heat shock, synaptic, and viral pathways were again prominent, in addition to Alzheimer, Parkinson, and Huntington aggregation proteins. Host proteins that bind TSE infectious particles can prevent host immune recognition and contribute to prolonged cross-species transmissions (the species barrier). Our infectious particle strategy, which reduces background sequences by >99%, emphasizes host targets for new therapeutic initiatives. Such therapies can simultaneously subvert common pathways of neurodegeneration.


Assuntos
Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Proteínas/metabolismo , Animais , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Ciclofilinas/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Camundongos , Príons/metabolismo , Proteínas/análise , Proteômica/métodos
6.
Proteomics ; 15(7): 1202-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25476245

RESUMO

We present a comprehensive workflow for large scale (>1000 transitions/run) label-free LC-MRM proteome assays. Innovations include automated MRM transition selection, intelligent retention time scheduling that improves S/N by twofold, and automatic peak modeling. Improvements to data analysis include a novel Q/C metric, normalized group area ratio, MLR normalization, weighted regression analysis, and data dissemination through the Yale protein expression database. As a proof of principle we developed a robust 90 min LC-MRM assay for mouse/rat postsynaptic density fractions which resulted in the routine quantification of 337 peptides from 112 proteins based on 15 observations per protein. Parallel analyses with stable isotope dilution peptide standards (SIS), demonstrate very high correlation in retention time (1.0) and protein fold change (0.94) between the label-free and SIS analyses. Overall, our method achieved a technical CV of 11.4% with >97.5% of the 1697 transitions being quantified without user intervention, resulting in a highly efficient, robust, and single injection LC-MRM assay.


Assuntos
Proteínas do Tecido Nervoso/química , Proteoma/química , Sinapses/química , Animais , Química Encefálica , Cromatografia Líquida de Alta Pressão , Proteínas do Tecido Nervoso/isolamento & purificação , Densidade Pós-Sináptica/química , Proteoma/isolamento & purificação , Proteômica , Ratos , Espectrometria de Massas em Tandem
7.
J Neurosci ; 34(34): 11461-9, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25143625

RESUMO

Stable changes in neuronal gene expression have been studied as mediators of addicted states. Of particular interest is the transcription factor ΔFosB, a truncated and stable FosB gene product whose expression in nucleus accumbens (NAc), a key reward region, is induced by chronic exposure to virtually all drugs of abuse and regulates their psychomotor and rewarding effects. Phosphorylation at Ser(27) contributes to ΔFosB's stability and accumulation following repeated exposure to drugs, and our recent work demonstrates that the protein kinase CaMKIIα phosphorylates ΔFosB at Ser(27) and regulates its stability in vivo. Here, we identify two additional sites on ΔFosB that are phosphorylated in vitro by CaMKIIα, Thr(149) and Thr(180), and demonstrate their regulation in vivo by chronic cocaine. We show that phosphomimetic mutation of Thr(149) (T149D) dramatically increases AP-1 transcriptional activity while alanine mutation does not affect transcriptional activity when compared with wild-type (WT) ΔFosB. Using in vivo viral-mediated gene transfer of ΔFosB-T149D or ΔFosB-T149A in mouse NAc, we determined that overexpression of ΔFosB-T149D in NAc leads to greater locomotor activity in response to an initial low dose of cocaine than does WT ΔFosB, while overexpression of ΔFosB-T149A does not produce the psychomotor sensitization to chronic low-dose cocaine seen after overexpression of WT ΔFosB and abrogates the sensitization seen in control animals at higher cocaine doses. We further demonstrate that mutation of Thr(149) does not affect the stability of ΔFosB overexpressed in mouse NAc, suggesting that the behavioral effects of these mutations are driven by their altered transcriptional properties.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Treonina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Linhagem Celular Tumoral , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/patologia , Núcleo Accumbens/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/genética , Treonina/genética , Fator de Transcrição AP-1/metabolismo
8.
Dev Neurosci ; 37(6): 476-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26068561

RESUMO

Conflicting reports are available with regard to the effects of childhood abuse and neglect on hippocampal function in children. While earlier imaging studies and some animal work have suggested that the effects of early-life stress (ELS) manifest only in adulthood, more recent studies have documented impaired hippocampal function in maltreated children and adolescents. Additional work using animal modes is needed to clarify the effects of ELS on hippocampal development. In this regard, genomic, proteomic, and molecular tools uniquely available in the mouse make it a particularly attractive model system to study this issue. However, very little work has been done so far to characterize the effects of ELS on hippocampal development in the mouse. To address this issue, we examined the effects of brief daily separation (BDS), a mouse model of ELS that impairs hippocampal-dependent memory in adulthood, on hippocampal development in 28-day-old juvenile mice. This age was chosen because it corresponds to the developmental period in which human imaging studies have revealed abnormal hippocampal development in maltreated children. Exposure to BDS caused a significant decrease in the total protein content of synaptosomes harvested from the hippocampus of 28-day-old male and female mice, suggesting that BDS impairs normal synaptic development in the juvenile hippocampus. Using a novel liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM) assay, we found decreased expression of many synaptic proteins, as well as proteins involved in axonal growth, myelination, and mitochondrial activity. Golgi staining in 28-day-old BDS mice showed an increase in the number of immature and abnormally shaped spines and a decrease in the number of mature spines in CA1 neurons, consistent with defects in synaptic maturation and synaptic pruning at this age. In 14-day-old pups, BDS deceased the expression of proteins involved in axonal growth and myelination, but did not affect the total protein content of synaptosomes harvested from the hippocampus, or protein levels of other synaptic markers. These results add two important findings to previous work in the field. First, our findings demonstrate that in 28-day-old juvenile mice, BDS impairs synaptic maturation and reduces the expression of proteins that are necessary for axonal growth, myelination, and mitochondrial function. Second, the results suggest a sequential model in which BDS impairs normal axonal growth and myelination before it disrupts synaptic maturation in the juvenile hippocampus.


Assuntos
Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Estresse Psicológico/fisiopatologia , Animais , Western Blotting , Cromatografia Líquida , Modelos Animais de Doenças , Feminino , Masculino , Espectrometria de Massas , Privação Materna , Camundongos , Camundongos Endogâmicos BALB C
9.
Chem Res Toxicol ; 28(4): 729-37, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25635619

RESUMO

Isocyanates have been a leading chemical cause of occupational asthma since their utility for generating polyurethane was first recognized over 60 years ago, yet the mechanisms of isocyanate asthma pathogenesis remain unclear. The present study provides in vivo evidence that a GSH mediated pathway underlies asthma-like eosinophilic inflammatory responses to respiratory tract isocyanate exposure. In naïve mice, a mixture of GSH reaction products with the chemical allergen, methylene-diphenyl diisocyanate (MDI), induced innate immune responses, characterized by significantly increased airway levels of Chitinase YM-1 and IL-12/IL-23ß (but not α) subunit. However, in mice immunologically sensitized to MDI via prior skin exposure, identical GSH-MDI doses induced substantially greater inflammatory responses, including significantly increased airway eosinophil numbers and mucus production, along with IL-12/IL-23ß, chitinases, and other indicators of alternative macrophage activation. The "self"-protein albumin in mouse airway fluid was uniquely modified by GSH-MDI at position (414)K, a preferred site of MDI reactivity on human albumin. The (414)K-MDI conjugation appears to covalently cross-link GSH to albumin via GSH's NH2-terminus, a unique conformation possibly resulting from cyclized mono(GSH)-MDI or asymmetric (S,N'-linked) bis(GSH)-MDI conjugates. Together, the data support a possible thiol mediated transcarbamoylating mechanism linking MDI exposure to pathogenic eosinophilic inflammatory responses.


Assuntos
Alérgenos/toxicidade , Eosinófilos/efeitos dos fármacos , Glutationa/metabolismo , Inflamação/induzido quimicamente , Isocianatos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Traqueia/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar , Humanos , Lactente , Camundongos , Camundongos Endogâmicos BALB C
10.
J Proteome Res ; 13(9): 4205-10, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25102069

RESUMO

Panorama is a web application for storing, sharing, analyzing, and reusing targeted assays created and refined with Skyline,1 an increasingly popular Windows client software tool for targeted proteomics experiments. Panorama allows laboratories to store and organize curated results contained in Skyline documents with fine-grained permissions, which facilitates distributed collaboration and secure sharing of published and unpublished data via a web-browser interface. It is fully integrated with the Skyline workflow and supports publishing a document directly to a Panorama server from the Skyline user interface. Panorama captures the complete Skyline document information content in a relational database schema. Curated results published to Panorama can be aggregated and exported as chromatogram libraries. These libraries can be used in Skyline to pick optimal targets in new experiments and to validate peak identification of target peptides. Panorama is open-source and freely available. It is distributed as part of LabKey Server,2 an open source biomedical research data management system. Laboratories and organizations can set up Panorama locally by downloading and installing the software on their own servers. They can also request freely hosted projects on https://panoramaweb.org , a Panorama server maintained by the Department of Genome Sciences at the University of Washington.


Assuntos
Bases de Dados de Proteínas , Bases de Conhecimento , Proteômica/métodos , Software , Internet , Espectrometria de Massas
11.
Methods ; 61(3): 287-98, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23702368

RESUMO

Selective or Multiple Reaction monitoring (SRM/MRM) is a liquid-chromatography (LC)/tandem-mass spectrometry (MS/MS) method that enables the quantitation of specific proteins in a sample by analyzing precursor ions and the fragment ions of their selected tryptic peptides. Instrumentation software has advanced to the point that thousands of transitions (pairs of primary and secondary m/z values) can be measured in a triple quadrupole instrument coupled to an LC, by a well-designed scheduling and selection of m/z windows. The design of a good MRM assay relies on the availability of peptide spectra from previous discovery-phase LC-MS/MS studies. The tedious aspect of manually developing and processing MRM assays involving thousands of transitions has spurred to development of software tools to automate this process. Software packages have been developed for project management, assay development, assay validation, data export, peak integration, quality assessment, and biostatistical analysis. No single tool provides a complete end-to-end solution, thus this article reviews the current state and discusses future directions of these software tools in order to enable researchers to combine these tools for a comprehensive targeted proteomics workflow.


Assuntos
Cromatografia Líquida/estatística & dados numéricos , Fragmentos de Peptídeos/análise , Proteínas/análise , Proteômica/estatística & dados numéricos , Software , Espectrometria de Massas em Tandem/estatística & dados numéricos , Animais , Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Humanos , Íons , Proteômica/métodos , Proteômica/normas , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas
12.
Med ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663403

RESUMO

BACKGROUND: Dosing of chemotherapies is often calculated according to the weight and/or height of the patient or equations derived from these, such as body surface area (BSA). Such calculations fail to capture intra- and interindividual pharmacokinetic variation, which can lead to order of magnitude variations in systemic chemotherapy levels and thus under- or overdosing of patients. METHODS: We designed and developed a closed-loop drug delivery system that can dynamically adjust its infusion rate to the patient to reach and maintain the drug's target concentration, regardless of a patient's pharmacokinetics (PK). FINDINGS: We demonstrate that closed-loop automated drug infusion regulator (CLAUDIA) can control the concentration of 5-fluorouracil (5-FU) in rabbits according to a range of concentration-time profiles (which could be useful in chronomodulated chemotherapy) and over a range of PK conditions that mimic the PK variability observed clinically. In one set of experiments, BSA-based dosing resulted in a concentration 7 times above the target range, while CLAUDIA keeps the concentration of 5-FU in or near the targeted range. Further, we demonstrate that CLAUDIA is cost effective compared to BSA-based dosing. CONCLUSIONS: We anticipate that CLAUDIA could be rapidly translated to the clinic to enable physicians to control the plasma concentration of chemotherapy in their patients. FUNDING: This work was supported by MIT's Karl van Tassel (1925) Career Development Professorship and Department of Mechanical Engineering and the Bridge Project, a partnership between the Koch Institute for Integrative Cancer Research at MIT and the Dana-Farber/Harvard Cancer Center.

13.
Proteomics ; 13(6): 904-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23319436

RESUMO

Proteomics is a rapidly transforming interdisciplinary field of research that embraces a diverse set of analytical approaches to tackle problems in fundamental and applied biology. This viewpoint article highlights the benefits of interlaboratory studies and standardization initiatives to enable investigators to address many of the challenges found in proteomics research. Among these initiatives, we discuss our efforts on a comprehensive performance standard for characterizing PTMs by MS that was recently developed by the Association of Biomolecular Resource Facilities (ABRF) Proteomics Standards Research Group (sPRG).


Assuntos
Laboratórios/normas , Espectrometria de Massas/normas , Processamento de Proteína Pós-Traducional , Proteômica , Comportamento Cooperativo , Guias como Assunto , Humanos , Proteoma/metabolismo , Padrões de Referência
14.
N Engl J Med ; 362(20): 1901-8, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20445167

RESUMO

Tourette's syndrome is a common developmental neuropsychiatric disorder characterized by chronic motor and vocal tics. Despite a strong genetic contribution, inheritance is complex, and risk alleles have proven difficult to identify. Here, we describe an analysis of linkage in a two-generation pedigree leading to the identification of a rare functional mutation in the HDC gene encoding L-histidine decarboxylase, the rate-limiting enzyme in histamine biosynthesis. Our findings, together with previously published data from model systems, point to a role for histaminergic neurotransmission in the mechanism and modulation of Tourette's syndrome and tics.


Assuntos
Códon sem Sentido , Histidina Descarboxilase/genética , Síndrome de Tourette/genética , Mapeamento Cromossômico , Feminino , Genes Dominantes , Ligação Genética , Predisposição Genética para Doença , Haplótipos , Histidina Descarboxilase/metabolismo , Humanos , Masculino , Repetições de Microssatélites , Linhagem , Reação em Cadeia da Polimerase
15.
Mol Cell Proteomics ; 9(10): 2109-24, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20585024

RESUMO

Caveolae are organelles abundant in the plasma membrane of many specialized cells including endothelial cells (ECs), epithelial cells, and adipocytes, and in these cells, caveolin-1 (Cav-1) is the major coat protein essential for the formation of caveolae. To identify proteins that require Cav-1 for stable incorporation into membrane raft domains, a quantitative proteomics analysis using isobaric tagging for relative and absolute quantification was performed on rafts isolated from wild-type and Cav-1-deficient mice. In three independent experiments, 117 proteins were consistently identified in membrane rafts with the largest differences in the levels of Cav-2 and in the caveola regulatory proteins Cavin-1 and Cavin-2. Because the lung is highly enriched in ECs, we validated and characterized the role of the newly described protein Cavin-1 in several cardiovascular tissues and in ECs. Cavin-1 was highly expressed in ECs lining blood vessels and in cultured ECs. Knockdown of Cavin-1 reduced the levels of Cav-1 and -2 and weakly influenced the formation of high molecular weight oligomers containing Cav-1 and -2. Cavin-1 silencing enhanced basal nitric oxide release from ECs but blocked proangiogenic phenotypes such as EC proliferation, migration, and morphogenesis in vitro. Thus, these data support an important role of Cavin-1 as a regulator of caveola function in ECs.


Assuntos
Caveolina 1/metabolismo , DNA Polimerase I/metabolismo , Proteômica , Animais , Sequência de Bases , Western Blotting , Caveolina 1/genética , Linhagem Celular , Movimento Celular , Proliferação de Células , Cromatografia por Troca Iônica , Inativação Gênica , Humanos , Espectrometria de Massas , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Óxido Nítrico/metabolismo , RNA Interferente Pequeno
16.
PLoS Pathog ; 4(6): e1000085, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18535660

RESUMO

Virions are thought to contain all the essential proteins that govern virus egress from the host cell and initiation of replication in the target cell. It has been known for some time that influenza virions contain nine viral proteins; however, analyses of other enveloped viruses have revealed that proteins from the host cell can also be detected in virions. To address whether the same is true for influenza virus, we used two complementary mass spectrometry approaches to perform a comprehensive proteomic analysis of purified influenza virus particles. In addition to the aforementioned nine virus-encoded proteins, we detected the presence of 36 host-encoded proteins. These include both cytoplasmic and membrane-bound proteins that can be grouped into several functional categories, such as cytoskeletal proteins, annexins, glycolytic enzymes, and tetraspanins. Interestingly, a significant number of these have also been reported to be present in virions of other virus families. Protease treatment of virions combined with immunoblot analysis was used to verify the presence of the cellular protein and also to determine whether it is located in the core of the influenza virus particle. Immunogold labeling confirmed the presence of membrane-bound host proteins on the influenza virus envelope. The identification of cellular constituents of influenza virions has important implications for understanding the interactions of influenza virus with its host and brings us a step closer to defining the cellular requirements for influenza virus replication. While not all of the host proteins are necessarily incorporated specifically, those that are and are found to have an essential role represent novel targets for antiviral drugs and for attenuation of viruses for vaccine purposes.


Assuntos
Orthomyxoviridae , Proteínas/análise , Vírion/química , Animais , Linhagem Celular , Células/química , Citoplasma/química , Humanos , Espectrometria de Massas , Proteínas de Membrana , Proteômica
17.
Proteomics Clin Appl ; 12(5): e1700157, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29573172

RESUMO

PURPOSE: Autosomal dominant polycystic kidney disease (ADPKD) is a life-long disease in which the genes responsible are known, but the pathogenesis of cyst formation and cyst growth are not understood. Cyst growth ultimately leads to end-stage renal failure in most patients. Analysis of the urinary proteome offers the potential to identify proteins that indicate the presence of cysts (and thus provides diagnosis) as well as the rates of cyst growth (providing prognostic information). EXPERIMENTAL DESIGN: A scheduled parallel reaction monitoring (sPRM) assay is performed on urine samples from 14 patients and 18 normal controls. For relative quantification, stable isotope-labeled synthetic peptides are spiked in the urinary protein digests prior to data collection. The data are subsequently normalized to creatinine and protein concentration in the respective urine samples to control for variations in water intake between individuals. RESULTS: Out of the 143 urinary proteins targeted for sPRM assay, 69 proteins are observed to be significantly dysregulated in ADPKD. The dysregulated proteins are used to cluster ADPKD patients into those who are more or less similar to normal controls. CONCLUSIONS AND CLINICAL RELEVANCE: This study shows that sPRM is a promising approach to rapidly screen large numbers of proteins in urine in order to provide earlier diagnosis and potentially better understand the pathogenesis of ADPKD development and progression.


Assuntos
Biomarcadores/urina , Rim Policístico Autossômico Dominante/urina , Proteínas/genética , Urina/química , Feminino , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Proteínas/química , Proteoma/genética
18.
J Biomol Tech ; 29(2): 39-45, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29977167

RESUMO

This report presents the results from the 2016 Association of Biomolecular Resource Facilities Proteome Informatics Research Group (iPRG) study on proteoform inference and false discovery rate (FDR) estimation from bottom-up proteomics data. For this study, 3 replicate Q Exactive Orbitrap liquid chromatography-tandom mass spectrometry datasets were generated from each of 4 Escherichia coli samples spiked with different equimolar mixtures of small recombinant proteins selected to mimic pairs of homologous proteins. Participants were given raw data and a sequence file and asked to identify the proteins and provide estimates on the FDR at the proteoform level. As part of this study, we tested a new submission system with a format validator running on a virtual private server (VPS) and allowed methods to be provided as executable R Markdown or IPython Notebooks. The task was perceived as difficult, and only eight unique submissions were received, although those who participated did well with no one method performing best on all samples. However, none of the submissions included a complete Markdown or Notebook, even though examples were provided. Future iPRG studies need to be more successful in promoting and encouraging participation. The VPS and submission validator easily scale to much larger numbers of participants in these types of studies. The unique "ground-truth" dataset for proteoform identification generated for this study is now available to the research community, as are the server-side scripts for validating and managing submissions.


Assuntos
Biologia Computacional/tendências , Bases de Dados Factuais , Proteoma/genética , Proteômica/tendências , Cromatografia Líquida , Escherichia coli/genética , Humanos , Software , Espectrometria de Massas em Tandem
19.
Proteomics Clin Appl ; 11(7-8)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28261998

RESUMO

PURPOSE: Development of delayed graft function (DGF) following kidney transplant is associated with poor outcomes. An ability to rapidly identify patients with DGF versus those with immediate graft function (IGF) may facilitate the treatment of DGF and the research needed to improve prognosis. The purpose of this study was to use a Targeted Urine Proteome Assay to identify protein biomarkers of delayed recovery from kidney transplant. EXPERIMENTAL DESIGN: Potential biomarkers were identified using the Targeted Urine Proteome (MRM) Assay to interrogate the relative DGF/IGF levels of expression of 167 proteins in urine taken 12-18 h after kidney implantation from 21 DGF, 15 SGF (slow graft function), and 16 IGF patients. An iterative Random Forest analysis approach evaluated the relative importance of each biomarker, which was then used to identify an optimum biomarker panel that provided the maximum sensitivity and specificity with the least number of biomarkers. CONCLUSIONS AND CLINICAL RELEVANCE: Four proteins were identified that together distinguished DGF with a sensitivity of 77.4%, specificity of 82.6%, and AUC of 0.891. This panel represents an important step toward identifying DGF at an early stage so that more effective treatments can be developed to improve long-term graft outcomes.


Assuntos
Função Retardada do Enxerto/metabolismo , Função Retardada do Enxerto/urina , Transplante de Rim/efeitos adversos , Proteômica , Urinálise , Biomarcadores/urina , Regulação da Expressão Gênica , Humanos
20.
Elife ; 62017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28613156

RESUMO

ARPP-16, ARPP-19, and ENSA are inhibitors of protein phosphatase PP2A. ARPP-19 and ENSA phosphorylated by Greatwall kinase inhibit PP2A during mitosis. ARPP-16 is expressed in striatal neurons where basal phosphorylation by MAST3 kinase inhibits PP2A and regulates key components of striatal signaling. The ARPP-16/19 proteins were discovered as substrates for PKA, but the function of PKA phosphorylation is unknown. We find that phosphorylation by PKA or MAST3 mutually suppresses the ability of the other kinase to act on ARPP-16. Phosphorylation by PKA also acts to prevent inhibition of PP2A by ARPP-16 phosphorylated by MAST3. Moreover, PKA phosphorylates MAST3 at multiple sites resulting in its inhibition. Mathematical modeling highlights the role of these three regulatory interactions to create a switch-like response to cAMP. Together, the results suggest a complex antagonistic interplay between the control of ARPP-16 by MAST3 and PKA that creates a mechanism whereby cAMP mediates PP2A disinhibition.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa