Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Hered ; 105(4): 506-520, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24744432

RESUMO

Development rate has important implications for individual fitness and physiology. In salmonid fishes, development rate correlates with many traits later in life, including life-history diversity, growth, and age and size at sexual maturation. In rainbow trout (Oncorhynchus mykiss), a quantitative trait locus for embryonic development rate has been detected on chromosome 5 across populations. However, few candidate genes have been identified within this region. In this study, we use gene mapping, gene expression, and quantitative genetic methods to further identify the genetic basis of embryonic developmental rate in O. mykiss Among the genes located in the region of the major development rate quantitative trait locus (GHR1, Clock1a, Myd118-1, and their paralogs), all were expressed early in embryonic development (fertilization through hatch), but none were differentially expressed between individuals with the fast- or slow-developing alleles for a major embryonic development rate quantitative trait locus. In a follow-up study of migratory and resident rainbow trout from natural populations in Alaska, we found significant additive variation in development rate and, moreover, found associations between development rate and allelic variation in all 3 candidate genes within the quantitative trait locus for embryonic development. The mapping of these genes to this region and associations in multiple populations provide positional candidates for further study of their roles in growth, development, and life-history diversity in this model salmonid.


Assuntos
Mapeamento Cromossômico , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/genética , Locos de Características Quantitativas , Alaska , Alelos , Animais , Aptidão Genética , Ligação Genética , Variação Genética , Genética Populacional , Genótipo , Polimorfismo de Nucleotídeo Único
2.
G3 (Bethesda) ; 4(8): 1385-94, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24875630

RESUMO

When treated with 17ß-estradiol, female ACI rats (Rattus norvegicus) rapidly develop mammary cancers that share multiple phenotypes with luminal breast cancers. Seven distinct quantitative trait loci that harbor genetic determinants of susceptibility to 17ß-estradiol-induced mammary cancer have been mapped in reciprocal intercrosses between susceptible ACI rats and resistant Brown Norway (BN) rats. A panel of unique congenic rat strains has now been generated and characterized to confirm the existence of these quantitative trait loci, designated Emca3 through Emca9, and to quantify their individual effects on susceptibility to 17ß-estradiol-induced mammary cancer. Each congenic strain carries BN alleles spanning an individual Emca locus, introgressed onto the ACI genetic background. Data presented herein indicate that BN alleles at Emca3, Emca4, Emca5, Emca6, and Emca9 reduce susceptibility to 17ß-estradiol-induced mammary cancer, whereas BN alleles at Emca7 increase susceptibility, thereby confirming the previous interval mapping data. All of these Emca loci are orthologous to regions of the human genome that have been demonstrated in genome-wide association studies to harbor genetic variants that influence breast cancer risk. Moreover, four of the Emca loci are orthologous to loci in humans that have been associated with mammographic breast density, a biomarker of breast cancer risk. This study further establishes the relevance of the ACI and derived congenic rat models of 17ß-estradiol-induced mammary cancer for defining the genetic bases of breast cancer susceptibility and elucidating the mechanisms through which 17ß-estradiol contributes to breast cancer development.


Assuntos
Predisposição Genética para Doença , Neoplasias Mamárias Animais/genética , Locos de Características Quantitativas , Animais , Animais Congênicos , Estradiol , Estrogênios , Feminino , Humanos , Neoplasias Mamárias Animais/induzido quimicamente , Fenótipo , Ratos Endogâmicos BN , Risco
3.
Cancer Prev Res (Phila) ; 6(1): 59-69, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23151807

RESUMO

The ACI rat model of 17ß-estradiol (E2)-induced mammary cancer has gained wide use in the study of breast cancer etiology, prevention, and genetics. Emca8, a QTL that determines susceptibility to E2-induced mammary cancer, was previously mapped to rat chromosome 5 (RNO5) in an intercross between resistant Brown Norway (BN) and susceptible ACI rats. In this study, a panel of congenic rat strains, each of which carries BN alleles across a defined segment of RNO5 on the ACI genetic background, was generated and used to map more precisely the Emca8 determinants of mammary cancer susceptibility. Three distinct genetic determinants were localized within Emca8, and two of these were mapped to intervals of less than 15 megabases. Emca8.1 harbors Cdkn2a, Cdkn2b, and other genes and is orthologous to the 9p21 breast cancer locus identified in genome-wide and candidate gene association studies. Emca8.2 harbors Cdkn2c and other genes and is orthologous to the 1p32 locus in humans that is frequently deleted in breast cancers. Both Emca8.1 and Emca8.2 harbor copy number variants that are orthologous to copy number variant regions in humans. Gene expression profiles were defined for mammary tissues from E2-treated ACI and ACI.BN-Emca8 rats to define the impact of Emca8 on gene expression and identify differentially expressed genes residing within Emca8.1 and Emca8.2. This study further illustrates the relevance of the ACI rat model of E2-induced mammary cancer for identifying novel genetic determinants of breast cancer susceptibility and defining the mechanisms through which estrogens contribute to breast cancer development. Cancer Prev Res; 6(1); 59-69. ©2012 AACR.


Assuntos
Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Neoplasias Mamárias Animais/genética , Alelos , Animais , Animais Congênicos , Mapeamento Cromossômico/métodos , Hibridização Genômica Comparativa , Cruzamentos Genéticos , Estradiol/metabolismo , Feminino , Dosagem de Genes , Variação Genética , Genótipo , Fenótipo , Locos de Características Quantitativas , Ratos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa