Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Phytopathology ; 113(4): 626-636, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37099273

RESUMO

In the early 1960s, Pseudomonas syringae and other host-specific phytopathogenic proteobacteria were discovered to elicit a rapid, resistance-associated death when infiltrated at high inoculum levels into nonhost tobacco leaves. This hypersensitive reaction (or response; HR) was a useful indicator of basic pathogenic ability. Research over the next 20 years failed to identify an elicitor of the HR but revealed that its elicitation required contact between metabolically active bacterial and plant cells. Beginning in the early 1980s, molecular genetic tools were applied to the HR puzzle, revealing the presence in P. syringae of clusters of hrp genes, so named because they are required for the HR and pathogenicity, and of avr genes, so named because their presence confers HR-associated avirulence in resistant cultivars of a host plant species. A series of breakthroughs over the next two decades revealed that (i) hrp gene clusters encode a type III secretion system (T3SS), which injects Avr (now "effector") proteins into plant cells, where their recognition triggers the HR; (ii) T3SSs, which are typically present in pathogenicity islands acquired by horizontal gene transfers, are found in many bacterial pathogens of plants and animals and inject many effector proteins, which are collectively essential for pathogenicity; and (iii) a primary function of phytopathogen effectors is to subvert non-HR defenses resulting from recognition of conserved microbial features presented outside of plant cells. In the 2000s, Hrp system research shifted to extracellular components enabling effector delivery across plant cell walls and plasma membranes, regulation, and tools for studying effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo III , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Células Vegetais/metabolismo , Doenças das Plantas/microbiologia , Plantas , Pseudomonas syringae/genética
2.
EMBO J ; 36(18): 2758-2769, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811287

RESUMO

Since signaling machineries for two modes of plant-induced immunity, pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), extensively overlap, PTI and ETI signaling likely interact. In an Arabidopsis quadruple mutant, in which four major sectors of the signaling network, jasmonate, ethylene, PAD4, and salicylate, are disabled, the hypersensitive response (HR) typical of ETI is abolished when the Pseudomonas syringae effector AvrRpt2 is bacterially delivered but is intact when AvrRpt2 is directly expressed in planta These observations led us to discovery of a network-buffered signaling mechanism that mediates HR signaling and is strongly inhibited by PTI signaling. We named this mechanism the ETI-Mediating and PTI-Inhibited Sector (EMPIS). The signaling kinetics of EMPIS explain apparently different plant genetic requirements for ETI triggered by different effectors without postulating different signaling machineries. The properties of EMPIS suggest that information about efficacy of the early immune response is fed back to the immune signaling network, modulating its activity and limiting the fitness cost of unnecessary immune responses.


Assuntos
Arabidopsis/imunologia , Proteínas de Bactérias/metabolismo , Imunidade Vegetal , Pseudomonas syringae/metabolismo , Transdução de Sinais , Fatores de Virulência/metabolismo , Arabidopsis/genética
3.
Mol Plant Microbe Interact ; 33(3): 377-381, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31990622

RESUMO

The worldwide molecular plant-microbe interactions research community was significantly diminished in November 2019 by the death of James "Jim" Robert Alfano at age 56. Jim was a giant in our field, who gained key insights into plant pathogenesis using the model bacterial pathogen Pseudomonas syringae. As a mentor, collaborator, and, above all, a friend, I know Jim's many dimensions and accomplishments and, sadly, the depth of loss being felt by the many people around the world who were touched by him. In tracing the path of Jim's career, I will emphasize the historical context and impact of his advances and, finally, the essence of the person we will so miss.


Assuntos
Doenças das Plantas/microbiologia , Plantas/microbiologia , Pseudomonas syringae , História do Século XX , História do Século XXI
4.
New Phytol ; 223(1): 447-461, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30861136

RESUMO

The interaction between tomato and Pseudomonas syringae pv tomato (Pst) is a well-developed model for investigating the molecular basis of the plant immune system. There is extensive natural variation in Solanum lycopersicum (tomato) but it has not been fully leveraged to enhance our understanding of the tomato-Pst pathosystem. We screened 216 genetically diverse accessions of cultivated tomato and a wild tomato species for natural variation in their response to three strains of Pst. The host response to Pst was investigated using multiple Pst strains, tomato accessions with available genome sequences, reactive oxygen species (ROS) assays, reporter genes and bacterial population measurements. The screen uncovered a broad range of previously unseen host symptoms in response to Pst, and one of these, stem galls, was found to be simply inherited. The screen also identified tomato accessions that showed enhanced responses to flagellin in bacterial population assays and in ROS assays upon exposure to flagellin-derived peptides, flg22 and flgII-28. Reporter genes confirmed that the host responses were due primarily to pattern recognition receptor-triggered immunity. This study revealed extensive natural variation in tomato for susceptibility and resistance to Pst and will enable elucidation of the molecular mechanisms underlying these host responses.


Assuntos
Ecótipo , Flagelina/metabolismo , Variação Genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Vegetal , Pseudomonas syringae/fisiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Resistência à Doença , Genes Reporter , Padrões de Herança/genética , Solanum lycopersicum/genética , Mutação/genética , Peptídeos/metabolismo , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/fisiologia , Tumores de Planta/microbiologia , Característica Quantitativa Herdável , Espécies Reativas de Oxigênio/metabolismo
5.
Plant Dis ; 99(4): 527-534, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30699553

RESUMO

A severe outbreak of bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, occurred in central New York in 2009. Isolate 09150, collected from this outbreak and subsequently named NYS-T1, was found to be highly virulent on tomato. To better understand the relationship of 09150 to other P. syringae strains and develop a diagnostic assay for aggressive strains of this pathogen, the 09150 genome was sequenced. Genome comparison revealed it to be highly similar to a previously sequenced isolate, T1. Genetic factors linked to host interaction including type III effectors, toxin biosynthetic genes, and elicitors of host innate immunity were identified. Type III effector repertoires were compared with other strains in the high virulence T1-like subgroup and lower virulence DC3000/P. syringae pv. maculicola subgroup within P. syringae phylogenetic Group I. Primers for conventional PCR were developed using sequences for avrA, hopW, conserved in the former subgroup and hopN, present in the latter. These were tested on isolates in the two subgroups, other pseudomonads, and other bacterial pathogens of tomato. Primers developed for avaA and hopW were diagnostic for more virulent strains of P. syringae pv. tomato while primers for hopN were diagnostic for P. syringae pv. tomato DC3000 and related P. syringe pv. maculicola strains. Primers designed against hopR distinguished both of these P. syringae subgroups from other P. syringae strains.

6.
Cell Microbiol ; 15(4): 601-18, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23107228

RESUMO

Bacterial flagellin is perceived as a microbe (or pathogen)-associated molecular pattern (MAMP or PAMP) by the extracellular pattern recognition receptors, FLS2 and TLR5, of plants and mammals respectively. Flagellin accidently translocated into mammalian cells by pathogen type III secretion systems (T3SSs) is recognized by nucleotide-binding leucine-rich repeat receptor NLRC4 as a pattern of pathogenesis and induces a death-associated immune response. The non-pathogen Pseudomonas fluorescens Pf0-1, expressing a Pseudomonas syringae T3SS, and the plant pathogen P. syringae pv. tomato DC3000 were used to seek evidence of an analogous cytoplasmic recognition system for flagellin in the model plant Nicotiana benthamiana. Flagellin (FliC) was secreted in culture and translocated into plant cells by the T3SS expressed in Pf0-1 and DC3000 and in their ΔflgGHI flagellar pathway mutants. ΔfliC and ΔflgGHI mutants of Pf0-1 and DC3000 were strongly reduced in elicitation of reactive oxygen species production and in immunity induction as indicated by the ability of challenge bacteria inoculated 6 h later to translocate a type III effector-reporter and to elicit effector-triggered cell death. Agrobacterium-mediated transient expression in N. benthamiana of FliC with or without a eukaryotic export signal peptide, coupled with virus-induced gene silencing of FLS2, revealed no immune response that was not FLS2 dependent. Transiently expressed FliC from DC3000 and Pectobacterium carotovorum did notinduce cell death in N. benthamiana, tobacco or tomato leaves. Flagellin is the major Pseudomonas MAMP perceived by N. benthamiana, and although flagellin secretion through the plant cell wall by the T3SS may partially contribute to FLS2-dependent immunity, flagellin in the cytosol does not elicit immune-associated cell death. We postulate that a death response to translocated MAMPs would produce vulnerability to the many necrotrophic pathogens of plants, such as P. carotovorum, which differ from P. syringae and other (hemi)biotrophic pathogens in benefitting from death-associated immune responses.


Assuntos
Sistemas de Secreção Bacterianos , Flagelina/metabolismo , Imunidade Inata , Nicotiana/imunologia , Pseudomonas fluorescens/metabolismo , Pseudomonas syringae/metabolismo , Agrobacterium/genética , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas syringae/genética , Receptores Imunológicos/metabolismo , Transformação Genética
7.
Proc Natl Acad Sci U S A ; 108(7): 2975-80, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282655

RESUMO

The virulence of Pseudomonas syringae and many other proteobacterial pathogens is dependent on complex repertoires of effector proteins injected into host cells by type III secretion systems. The 28 well-expressed effector genes in the repertoire of the model pathogen P. syringae pv. tomato DC3000 were deleted to produce polymutant DC3000D28E. Growth of DC3000D28E in Nicotiana benthamiana was symptomless and 4 logs lower than that of DC3000ΔhopQ1-1, which causes disease in this model plant. DC3000D28E seemed functionally effectorless but otherwise WT in diagnostic phenotypes relevant to plant interactions (for example, ability to inject the AvrPto-Cya reporter into N. benthamiana). Various effector genes were integrated by homologous recombination into native loci or by a programmable or random in vivo assembly shuttle (PRIVAS) system into the exchangeable effector locus in the Hrp pathogenicity island of DC3000D28E. The latter method exploited dual adapters and recombination in yeast for efficient assembly of PCR products into programmed or random combinations of multiple effector genes. Native and PRIVAS-mediated integrations were combined to identify a minimal functional repertoire of eight effector genes that restored much of the virulence of DC3000ΔhopQ1-1 in N. benthamiana, revealing a hierarchy in effector function: AvrPtoB acts with priority in suppressing immunity, enabling other effectors to promote further growth (HopM1 and HopE1), chlorosis (HopG1), lesion formation (HopAM1-1), and near full growth and symptom production (AvrE, HopAA1-1, and/or HopN1 functioning synergistically with the previous effectors). DC3000D28E, the PRIVAS method, and minimal functional repertoires provide new resources for probing the plant immune system.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Proteínas de Bactérias/genética , Primers do DNA/genética , Vetores Genéticos/genética , Ilhas Genômicas/genética , Reação em Cadeia da Polimerase , Especificidade da Espécie , Nicotiana/metabolismo , Virulência
8.
J Bacteriol ; 195(2): 287-96, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23144243

RESUMO

Pseudomonas syringae pv. tomato DC3000 produces the phytotoxin coronatine, a major determinant of the leaf chlorosis associated with DC3000 pathogenesis. The DC3000 PSPTO4723 (cmaL) gene is located in a genomic region encoding type III effectors; however, it promotes chlorosis in the model plant Nicotiana benthamiana in a manner independent of type III secretion. Coronatine is produced by the ligation of two moieties, coronafacic acid (CFA) and coronamic acid (CMA), which are produced by biosynthetic pathways encoded in separate operons. Cross-feeding experiments, performed in N. benthamiana with cfa, cma, and cmaL mutants, implicate CmaL in CMA production. Furthermore, analysis of bacterial supernatants under coronatine-inducing conditions revealed that mutants lacking either the cma operon or cmaL accumulate CFA rather than coronatine, supporting a role for CmaL in the regulation or biosynthesis of CMA. CmaL does not appear to regulate CMA production, since the expression of proteins with known roles in CMA production is unaltered in cmaL mutants. Rather, CmaL is needed for the first step in CMA synthesis, as evidenced by the fact that wild-type levels of coronatine production are restored to a ΔcmaL mutant when it is supplemented with 50 µg/ml l-allo-isoleucine, the starting unit for CMA production. cmaL is found in all other sequenced P. syringae strains with coronatine biosynthesis genes. This characterization of CmaL identifies a critical missing factor in coronatine production and provides a foundation for further investigation of a member of the widespread DUF1330 protein family.


Assuntos
Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Indenos/metabolismo , Isoleucina/metabolismo , Pseudomonas syringae/enzimologia , Deleção de Genes , Redes e Vias Metabólicas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Nicotiana/microbiologia
9.
Mol Microbiol ; 85(2): 195-200, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22646515

RESUMO

The assembly of type III secretion systems (T3SSs), which inject bacterial effector proteins into the cytosol of animal and plant hosts, is a highly regulated process. Animal pathogens use a length-control protein to produce T3SS needles of fixed length and then a second regulator, such as YopN in Yersinia spp, to mediate host contact-dependent effector delivery. For Pseudomonas syringae and other plant pathogens, regulation of the assembly process differs because the T3SS pilus must grow through variably thick plant cell walls before contacting the host plasma membrane. In this issue of Molecular Microbiology, Crabill et al. (2012) report evidence that the YopN homologue HrpJ is a multifunctional regulator of T3SS assembly in DC3000. A hrpJ mutant hyper-secretes pilus protein and no longer secretes four translocator proteins in culture, and it fails to inject effectors in planta. As with other proteins in this class, HrpJ is itself a T3SS substrate, but secretion-incompetent forms retain regulatory function. However, HrpJ is unusual in suppressing innate immune responses within host cells, as demonstrated with transgenic plants. The multiple capabilities of HrpJ appear to couple host contact sensing with pilus length control and translocator secretion while also contributing to immunity suppression early in the interaction.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Células Vegetais/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Fatores de Virulência/metabolismo
10.
Cell Microbiol ; 14(5): 669-81, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22233353

RESUMO

The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression.


Assuntos
Cisteína Proteases/metabolismo , Interações Hospedeiro-Patógeno , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Pseudomonas syringae/enzimologia , Solanum lycopersicum/microbiologia , Fatores de Virulência/metabolismo , Apoptose , Proteínas de Bactérias/metabolismo , Evasão da Resposta Imune , Imunidade Inata , Solanum lycopersicum/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Mapeamento de Interação de Proteínas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/patogenicidade , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
11.
Plant J ; 64(2): 318-30, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21070411

RESUMO

Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid γ-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome harbors three genes annotated as gabT GABA transaminases. A DC3000 mutant lacking all three gabT genes was constructed and found to be unable to utilize GABA as a sole carbon and nitrogen source. In complete minimal media supplemented with GABA, the mutant grew less well than wild-type DC3000 and showed strongly reduced expression of hrpL and avrPto, which encode an alternative sigma factor and effector, respectively, associated with the type III secretion system. The growth of the gabT triple mutant was weakly reduced in Arabidopsis ecotype Landberg erecta (Ler) and strongly reduced in the Ler pop2-1 GABA transaminase-deficient mutant that accumulates higher levels of GABA. Much of the ability to grow on GABA-amended minimal media or in Arabidopsis pop2-1 leaves could be restored to the gabT triple mutant by expression in trans of just gabT2. The ability of DC3000 to elicit the hypersensitive response (HR) in tobacco leaves is dependent upon deployment of the type III secretion system, and the gabT triple mutant was less able than wild-type DC3000 to elicit this HR when bacteria were infiltrated along with GABA at levels of 1 mm or more. GABA may have multiple effects on P. syringae-plant interactions, with elevated levels increasing disease resistance.


Assuntos
4-Aminobutirato Transaminase/metabolismo , Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Pseudomonas syringae/patogenicidade , Ácido gama-Aminobutírico/metabolismo , 4-Aminobutirato Transaminase/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura , Genes Bacterianos , Genes de Plantas , Ácido Glutâmico , Manitol , Mutação , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Transaminases/genética
12.
PLoS Pathog ; 5(4): e1000388, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19381254

RESUMO

The gamma-proteobacterial plant pathogen Pseudomonas syringae pv. tomato DC3000 uses the type III secretion system to inject ca. 28 Avr/Hop effector proteins into plants, which enables the bacterium to grow from low inoculum levels to produce bacterial speck symptoms in tomato, Arabidopsis thaliana, and (when lacking hopQ1-1) Nicotiana benthamiana. The effectors are collectively essential but individually dispensable for the ability of the bacteria to defeat defenses, grow, and produce symptoms in plants. Eighteen of the effector genes are clustered in six genomic islands/islets. Combinatorial deletions involving these clusters and two of the remaining effector genes revealed a redundancy-based structure in the effector repertoire, such that some deletions diminished growth in N. benthamiana only in combination with other deletions. Much of the ability of DC3000 to grow in N. benthamiana was found to be due to five effectors in two redundant-effector groups (REGs), which appear to separately target two high-level processes in plant defense: perception of external pathogen signals (AvrPto and AvrPtoB) and deployment of antimicrobial factors (AvrE, HopM1, HopR1). Further support for the membership of HopR1 in the same REG as AvrE was gained through bioinformatic analysis, revealing the existence of an AvrE/DspA/E/HopR effector superfamily, which has representatives in virtually all groups of proteobacterial plant pathogens that deploy type III effectors.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos/fisiologia , Doenças das Plantas/genética , Pseudomonas syringae/genética , Virulência/genética , Flagelina/genética , Deleção de Genes , Glucanos/biossíntese , Transporte Proteico/fisiologia , Nicotiana/metabolismo , Nicotiana/microbiologia , Virulência/fisiologia
13.
Mol Plant Microbe Interact ; 23(6): 727-39, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20459312

RESUMO

The type III secretion system (T3SS) of Pseudomonas syringae translocates into plant cells multiple effectors that suppress pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). P. syringae pv. tomato DC3000 no longer delivers the T3SS translocation reporter AvrPto-Cya in Nicotiana benthamiana leaf tissue in which PTI was induced by prior inoculation with P. fluorescens(pLN18). Cosmid pLN18 expresses the T3SS system of P. syringae pv. syringae 61 but lacks the hopA1(Psy61) effector gene. P. fluorescens(pLN18) expressing HrpH(PtoDC3000) or HopP1(PtoDC3000), two T3SS-associated putative lytic transglycosylases, suppresses PTI, based on multiple assays involving DC3000 challenge inoculum (AvrPto-Cya translocation, hypersensitive response elicitation, and colony development in planta) or on plant responses (vascular dye uptake or callose deposition). Analysis of additional mutations in pHIR11 derivatives revealed that the pLN18-encoded T3SS elicits a higher level of reactive oxygen species (ROS) than does P. fluorescens without a T3SS, that enhanced ROS production is dependent on the HrpK1 translocator, and that HopA1(Psy61) suppresses ROS elicitation attributable to both the P. fluorescens PAMPs and the presence of a functional T3SS.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Nicotiana/microbiologia , Doenças das Plantas/imunologia , Pseudomonas syringae/metabolismo , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno , Imunidade Inata , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo
14.
Mol Plant Microbe Interact ; 23(6): 715-26, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20459311

RESUMO

In order to identify components of pathogen-associated molecular pattern-triggered immunity (PTI) pathways in Nicotiana benthamiana, we conducted a large-scale forward-genetics screen using virus-induced gene silencing and a cell-death-based assay for assessing PTI. The assay relied on four combinations of PTI-inducing nonpathogens and cell-death-causing challenger pathogens and was first validated in plants silenced for FLS2 or BAK1. Over 3,200 genes were screened and 14 genes were identified that, when silenced, compromised PTI as judged by the cell-death-based assay. Further analysis indicated that the 14 genes were not involved in a general cell death response. A subset of the genes was found to act downstream of FLS2-mediated PTI induction, and silencing of three genes compromised production of reactive oxygen species in leaves exposed to flg22. The 14 genes encode proteins with potential functions in defense and hormone signaling, protein stability and degradation, energy and secondary metabolism, and cell wall biosynthesis and provide a new resource to explore the molecular basis for the involvement of these processes in PTI.


Assuntos
Regulação da Expressão Gênica de Plantas/imunologia , Nicotiana/genética , Nicotiana/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Morte Celular , Inativação Gênica , Biblioteca Genômica , Interações Hospedeiro-Patógeno , Folhas de Planta/citologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio
15.
Mol Plant Microbe Interact ; 23(8): 991-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20615110

RESUMO

Understanding the molecular basis of plant responses to pathogen-associated molecular patterns (PAMPs) is an active area of research in the field of plant-microbe interactions. A growing number of plant genes involved in various steps of PAMP-triggered immunity (PTI) pathways and microbial factors involved in the elicitation or suppression of PTI have been identified. These studies have largely relied on Arabidopsis thaliana and, therefore, most of the PTI assays have been developed and optimized for that model plant system. Although PTI is a conserved feature among plants, the response spectra vary across different species. Thus, there is a need for robust PTI assays in other pathosystems, such as those involving Solanaceae plant-pathogen interactions, which include many economically important plants and their diseases. We have optimized molecular, cellular, and whole-plant methods to measure PTI responses in two widely studied solanaceous species, tomato (Solanum lycopersicum) and Nicotiana benthamiana. Here, we provide detailed protocols for measuring various PTI-associated phenotypes, including bacterial populations after pretreatment of leaves with PAMPs, induction of reporter genes, callose deposition, activation of mitogen-activated protein kinases, and a luciferase-based reporter system. These methods will facilitate limited genetic screens and detailed characterization of potential PTI-related genes in model and economically important Solanaceae spp.-pathogen interactions.


Assuntos
Nicotiana/imunologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/patologia , Parede Celular/microbiologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Doenças das Plantas/imunologia , Folhas de Planta/microbiologia , Protoplastos/microbiologia , Nicotiana/microbiologia
16.
J Bacteriol ; 191(9): 3120-31, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19270091

RESUMO

Pseudomonas syringae delivers virulence effector proteins into plant cells via an Hrp1 type III secretion system (T3SS). P. syringae pv. tomato DC3000 HrpP has a C-terminal, putative T3SS substrate specificity switch domain, like Yersinia YscP. A DeltahrpP DC3000 mutant could not cause disease in tomato or elicit a hypersensitive response (HR) in tobacco, but the HR could be restored by expression of HrpP in trans. Though HrpP is a relatively divergent protein in the T3SS of different P. syringae pathovars, hrpP from P. syringae pv. syringae 61 and P. syringae pv. phaseolicola 1448A restored HR elicitation and pathogenicity to DC3000 DeltahrpP. HrpP was translocated into Nicotiana benthamiana cells via the DC3000 T3SS when expressed from its native promoter, but it was not secreted in culture. N- and C-terminal truncations of HrpP were tested for their ability to be translocated and to restore HR elicitation activity to the DeltahrpP mutant. No N-terminal truncation completely abolished translocation, implying that HrpP has an atypical T3SS translocation signal. Deleting more than 20 amino acids from the C terminus abolished the ability to restore HR elicitation. HrpP fused to green fluorescent protein was no longer translocated but could restore HR elicitation activity to the DeltahrpP mutant, suggesting that translocation is not essential for the function of HrpP. No T3SS substrates were detectably secreted by DC3000 DeltahrpP except the pilin subunit HrpA, which unexpectedly was secreted poorly. HrpP may function somewhat differently than YscP because the P. syringae T3SS pilus likely varies in length due to differing plant cell walls.


Assuntos
Proteínas de Bactérias/fisiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Fatores de Virulência/fisiologia , Proteínas de Bactérias/genética , Deleção de Genes , Teste de Complementação Genética , Solanum lycopersicum/microbiologia , Pseudomonas syringae/genética , Deleção de Sequência , Nicotiana/microbiologia , Fatores de Virulência/genética
17.
Mol Plant Microbe Interact ; 22(11): 1341-55, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19810804

RESUMO

The ability of Pseudomonas syringae pv. tomato DC3000 to cause bacterial speck disease in tomato is dependent on the injection, via the type III secretion system, of approximately 28 Avr/Hop effector proteins. HopAA1-1 is encoded in the conserved effector locus (CEL) of the P. syringae Hrp pathogenicity island. Transiently expressed HopAA1-1 acts inside Saccharomyces cerevisiae and plant cells to elicit cell death. hopAA1 homologs were cloned and sequenced from the CEL of seven P. syringae strains representing diverse pathovars. Analysis of the sequences revealed that HopAA1-1 carries a potential GTPase-activating protein (GAP) domain, GALRA, which is polymorphic (FEN instead of LRA) in HopAA1-2, a paralogous DC3000 effector. Deleting hopAA1-1 from DC3000 reduces the formation of necrotic speck lesions in dip-inoculated tomato leaves if effector-gene cluster IX or just PSPTO4723 within this region has been deleted. A HopAA1-1 mutant in which the putative catalytic arginine in the GAP-like domain has been replaced with alanine retains its ability to kill yeast and promote the formation of speck lesions by the DeltahopAA1-1DeltaIX mutant, but a HopAA1-1 mutant carrying the FEN polymorphism loses both of these abilities. Unexpectedly, PSPTO4723 does not appear to encode an effector and its deletion also reduces disease-associated chlorosis.


Assuntos
Proteínas de Bactérias/metabolismo , Folhas de Planta/microbiologia , Pseudomonas syringae/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Sequência de Aminoácidos , Regulação Bacteriana da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia
18.
Mol Plant Microbe Interact ; 22(1): 52-62, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19061402

RESUMO

Diverse gene products including phytotoxins, pathogen-associated molecular patterns, and type III secreted effectors influence interactions between Pseudomonas syringae strains and plants, with additional yet uncharacterized factors likely contributing as well. Of particular interest are those interactions governing pathogen-host specificity. Comparative genomics of closely related pathogens with different host specificity represents an excellent approach for identification of genes contributing to host-range determination. A draft genome sequence of Pseudomonas syringae pv. tomato T1, which is pathogenic on tomato but nonpathogenic on Arabidopsis thaliana, was obtained for this purpose and compared with the genome of the closely related A. thaliana and tomato model pathogen P. syringae pv. tomato DC3000. Although the overall genetic content of each of the two genomes appears to be highly similar, the repertoire of effectors was found to diverge significantly. Several P. syringae pv. tomato T1 effectors absent from strain DC3000 were confirmed to be translocated into plants, with the well-studied effector AvrRpt2 representing a likely candidate for host-range determination. However, the presence of avrRpt2 was not found sufficient to explain A. thaliana resistance to P. syringae pv. tomato T1, suggesting that other effectors and possibly type III secretion system-independent factors also play a role in this interaction.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Pseudomonas syringae/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Genômica/métodos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Modelos Genéticos , Pseudomonas syringae/classificação , Análise de Sequência de DNA , Especificidade da Espécie
19.
BMC Microbiol ; 9 Suppl 1: S3, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19278551

RESUMO

A wide diversity of plant-associated symbionts, including microbes, produce proteins that can enter host cells, or are injected into host cells in order to modify the physiology of the host to promote colonization. These molecules, termed effectors, commonly target the host defense signaling pathways in order to suppress the defense response. Others target the gene expression machinery or trigger specific modifications to host morphology or physiology that promote the nutrition and proliferation of the symbiont. When recognized by the host's surveillance machinery, which includes cognate resistance (R) gene products, defense responses are engaged to restrict pathogen proliferation. Effectors from diverse symbionts may be delivered into plant cells via varied mechanisms, including whole organism cellular entry (viruses, some bacteria and fungi), type III and IV secretion (in bacteria), physical injection (nematodes and insects) and protein translocation signal sequences (oomycetes and fungi). This mini-review will summarize both similarities and differences in effectors and effector delivery systems found in diverse plant-associated symbionts as well as how these are described with Plant-Associated Microbe Gene Ontology (PAMGO) terms.


Assuntos
Interações Hospedeiro-Patógeno , Simbiose , Terminologia como Assunto , Animais , Bactérias/metabolismo , Transporte Biológico , Fungos/metabolismo , Nematoides/metabolismo , Oomicetos/metabolismo , Doenças das Plantas/microbiologia , Plantas/metabolismo , Plantas/microbiologia , Vocabulário Controlado
20.
BMC Microbiol ; 9 Suppl 1: S4, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19278552

RESUMO

Genome-informed identification and characterization of Type III effector repertoires in various bacterial strains and species is revealing important insights into the critical roles that these proteins play in the pathogenic strategies of diverse bacteria. However, non-systematic discipline-specific approaches to their annotation impede analysis of the accumulating wealth of data and inhibit easy communication of findings among researchers working on different experimental systems. The development of Gene Ontology (GO) terms to capture biological processes occurring during the interaction between organisms creates a common language that facilitates cross-genome analyses. The application of these terms to annotate type III effector genes in different bacterial species - the plant pathogen Pseudomonas syringae pv tomato DC3000 and animal pathogenic strains of Escherichia coli - illustrates how GO can effectively describe fundamental similarities and differences among different gene products deployed as part of diverse pathogenic strategies. In depth descriptions of the GO annotations for P. syringae pv tomato DC3000 effector AvrPtoB and the E. coli effector Tir are described, with special emphasis given to GO capability for capturing information about interacting proteins and taxa. GO-highlighted similarities in biological process and molecular function for effectors from additional pathosystems are also discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli O157/metabolismo , Pseudomonas syringae/metabolismo , Terminologia como Assunto , Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Vocabulário Controlado
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa