Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Linacre Q ; 87(4): 425-437, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33100390

RESUMO

Although Christian ethics and contemporary utilitarian ethics both employ terms such as "love" and "compassion" in their efforts to deal with human suffering, they are in fact polar opposite ethical views. This fact is not at all easy to discern. One key to perceiving the radical opposition between them lies in clarifying their respective concepts of love and suffering and the relation between the two. In Christian personalism, suffering is always understood as the suffering of individual persons, while in utilitarianism, suffering is primarily understood as a quantifiable entity detached from the individuals who experience it. This detachment of suffering from individuals leads to the depersonalizing and commodifying recommendations of utilitarianism. The dignity of persons as understood in Christian anthropology serves as the foundation of Christian ethics and is the only basis on which ethics can avoid commodifying people. The article begins with an explanation of the utilitarian approach to suffering and its concept of love. It then proceeds to express the view of love and suffering that flows from the Christian perspective. The article concludes by exposing the inherently self-defeating structure of utilitarian ethics and offers the hope-filled, if challenging, approach of Christian personalism. Although Christian anthropology and ethics developed within the historical context of Christianity, and in fact could only have developed there, the arguments here are primarily philosophical elucidations of the differences between the two opposing schools of thought discussed, while here and there including occasional theological points. SUMMARY: The article examines the difference between Christian ethics and utilitarian ethics, bringing out their stark opposition on the topics of love, suffering and the human person.

2.
Mol Ther ; 26(9): 2282-2294, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30196853

RESUMO

This study evaluated the safety and tolerability of ocular RS1 adeno-associated virus (AAV8-RS1) gene augmentation therapy to the retina of participants with X-linked retinoschisis (XLRS). XLRS is a monogenic trait affecting only males, caused by mutations in the RS1 gene. Retinoschisin protein is secreted principally in the outer retina, and its absence results in retinal cavities, synaptic dysfunction, reduced visual acuity, and susceptibility to retinal detachment. This phase I/IIa single-center, prospective, open-label, three-dose-escalation clinical trial administered vector to nine participants with pathogenic RS1 mutations. The eye of each participant with worse acuity (≤63 letters; Snellen 20/63) received the AAV8-RS1 gene vector by intravitreal injection. Three participants were assigned to each of three dosage groups: 1e9 vector genomes (vg)/eye, 1e10 vg/eye, and 1e11 vg/eye. The investigational product was generally well tolerated in all but one individual. Ocular events included dose-related inflammation that resolved with topical and oral corticosteroids. Systemic antibodies against AAV8 increased in a dose-related fashion, but no antibodies against RS1 were observed. Retinal cavities closed transiently in one participant. Additional doses and immunosuppressive regimens are being explored to pursue evidence of safety and efficacy (ClinicalTrials.gov: NCT02317887).


Assuntos
Proteínas do Olho/metabolismo , Terapia Genética/métodos , Retinosquise/terapia , Adulto , Idoso , Proteínas do Olho/genética , Feminino , Humanos , Injeções Intravítreas , Masculino , Pessoa de Meia-Idade , Mutação/genética , Retina/metabolismo , Retina/patologia , Retinosquise/genética , Retinosquise/metabolismo , Adulto Jovem
3.
Mol Ther ; 26(2): 496-509, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29292164

RESUMO

Hemophilia A is an X-linked bleeding disorder caused by mutations in the gene encoding the factor VIII (FVIII) coagulation protein. Bleeding episodes in patients are reduced by prophylactic therapy or treated acutely using recombinant or plasma-derived FVIII. We have made an adeno-associated virus 5 vector containing a B domain-deleted (BDD) FVIII gene (BMN 270) with a liver-specific promoter. BMN 270 injected into hemophilic mice resulted in a dose-dependent expression of BDD FVIII protein and a corresponding correction of bleeding time and blood loss. At the highest dose tested, complete correction was achieved. Similar corrections in bleeding were observed at approximately the same plasma levels of FVIII protein produced either endogenously by BMN 270 or following exogenous administration of recombinant BDD FVIII. No evidence of liver dysfunction or hepatocyte endoplasmic reticulum stress was observed. Comparable doses in primates produced similar levels of circulating FVIII. These preclinical data support evaluation of BMN 270 in hemophilia A patients.


Assuntos
Fator VIII/genética , Terapia Genética , Hemofilia A/genética , Hemofilia A/terapia , Fragmentos de Peptídeos/genética , Animais , Apoptose/genética , Linhagem Celular , Dependovirus/genética , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Expressão Gênica , Ordem dos Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Hemofilia A/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/sangue , Primatas , Regiões Promotoras Genéticas
4.
Stroke ; 48(5): 1420-1423, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28325846

RESUMO

BACKGROUND AND PURPOSE: Brain arteriovenous malformation (bAVM) is an important risk factor for intracranial hemorrhage. Current therapies are associated with high morbidities. Excessive vascular endothelial growth factor has been implicated in bAVM pathophysiology. Because soluble FLT1 binds to vascular endothelial growth factor with high affinity, we tested intravenous delivery of an adeno-associated viral vector serotype-9 expressing soluble FLT1 (AAV9-sFLT1) to alleviate the bAVM phenotype. METHODS: Two mouse models were used. In model 1, bAVM was induced in R26CreER;Eng2f/2f mice through global Eng gene deletion and brain focal angiogenic stimulation; AAV2-sFLT02 (an AAV expressing a shorter form of sFLT1) was injected into the brain at the time of model induction, and AAV9-sFLT1, intravenously injected 8 weeks after. In model 2, SM22αCre;Eng2f/2f mice had a 90% occurrence of spontaneous bAVM at 5 weeks of age and 50% mortality at 6 weeks; AAV9-sFLT1 was intravenously delivered into 4- to 5-week-old mice. Tissue samples were collected 4 weeks after AAV9-sFLT1 delivery. RESULTS: AAV2-sFLT02 inhibited bAVM formation, and AAV9-sFLT1 reduced abnormal vessels in model 1 (GFP versus sFLT1: 3.66±1.58/200 vessels versus 1.98±1.29, P<0.05). AAV9-sFLT1 reduced the occurrence of bAVM (GFP versus sFLT1: 100% versus 36%) and mortality (GFP versus sFLT1: 57% [12/22 mice] versus 24% [4/19 mice], P<0.05) in model 2. Kidney and liver function did not change significantly. Minor liver inflammation was found in 56% of AAV9-sFLT1-treated model 1 mice. CONCLUSIONS: By applying a regulated mechanism to restrict sFLT1 expression to bAVM, AAV9-sFLT1 can potentially be developed into a safer therapy to reduce the bAVM severity.


Assuntos
Inibidores da Angiogênese , Fístula Arteriovenosa/terapia , Terapia Genética/métodos , Vetores Genéticos , Malformações Arteriovenosas Intracranianas/terapia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Animais , Dependovirus , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Camundongos
5.
Hum Mol Genet ; 24(22): 6446-58, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26358772

RESUMO

Retinal neurodegenerative diseases are especially attractive targets for gene replacement therapy, which appears to be clinically effective for several monogenic diseases. X-linked forms of retinitis pigmentosa (XLRP) are relatively severe blinding disorders, resulting from progressive photoreceptor dysfunction primarily caused by mutations in RPGR or RP2 gene. With a goal to develop gene therapy for the XLRP-RP2 disease, we first performed detailed characterization of the Rp2-knockout (Rp2-KO) mice and observed early-onset cone dysfunction, which was followed by progressive cone degeneration, mimicking cone vision impairment in XLRP patients. The mice also exhibited distinct and significantly delayed falling phase of photopic b-wave of electroretinogram (ERG). Concurrently, we generated a self-complementary adeno-associated viral (AAV) vector carrying human RP2-coding sequence and demonstrated its ability to mediate stable RP2 protein expression in mouse photoreceptors. A long-term efficacy study was then conducted in Rp2-KO mice following AAV-RP2 vector administration. Preservation of cone function was achieved with a wide dose range over 18-month duration, as evidenced by photopic ERG and optomotor tests. The slower b-wave kinetics was also completely restored. Morphologically, the treatment preserved cone viability, corrected mis-trafficking of M-cone opsin and restored cone PDE6 expression. The therapeutic effect was achieved even in mice that received treatment at an advanced disease stage. The highest AAV-RP2 dose group demonstrated retinal toxicity, highlighting the importance of careful vector dosing in designing future human trials. The wide range of effective dose, a broad treatment window and long-lasting therapeutic effects should make the RP2 gene therapy attractive for clinical development.


Assuntos
Proteínas do Olho/genética , Terapia Genética/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Células Fotorreceptoras Retinianas Cones/fisiologia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Animais , Eletrorretinografia , Proteínas do Olho/biossíntese , Proteínas de Ligação ao GTP , Doenças Genéticas Ligadas ao Cromossomo X/genética , Vetores Genéticos , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Knockout , Mutação , Pirofosfatases/deficiência , Pirofosfatases/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/genética , Retinose Pigmentar/metabolismo
6.
Hum Mol Genet ; 24(14): 3956-70, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25877300

RESUMO

Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene account for >70% of X-linked retinitis pigmentosa (XLRP) and 15-20% of all inherited retinal degeneration. Gene replacement therapy for RPGR-XLRP was hampered by the relatively slow disease progression in mouse models and by difficulties in cloning the full-length RPGR-ORF15 cDNA that includes a purine-rich 3'-coding region; however, its effectiveness has recently been demonstrated in four dogs with RPGR mutations. To advance the therapy to clinical stage, we generated new stable vectors in AAV8 or AAV9 carrying mouse and human full-length RPGR-ORF15-coding sequence and conducted a comprehensive long-term dose-efficacy study in Rpgr-knockout mice. After validating their ability to produce full-length proteins that localize to photoreceptor connecting cilia, we evaluated various vector doses in mice during a 2-year study. We demonstrate that eyes treated with a single injection of mouse or human RPGR-ORF15 vector at an optimal dose maintained the expression of RPGR-ORF15 throughout the study duration and exhibited higher electroretinogram amplitude, thicker photoreceptor layer and better targeting of opsins to outer segments compared with sham-treated eyes. Furthermore, mice that received treatment at an advanced age also showed remarkable preservation of retinal structure and function. Retinal toxicity was observed at high vector doses, highlighting the importance of careful dose optimization in future clinical experiments. Our long-term dose-efficacy study should facilitate the design of human trials with human RPGR-ORF15 vector as a clinical candidate.


Assuntos
Proteínas de Transporte/genética , Proteínas do Olho/genética , Terapia Genética , Retinose Pigmentar/genética , Animais , Proteínas de Transporte/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Eletrorretinografia , Éxons , Proteínas do Olho/metabolismo , Vetores Genéticos/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fases de Leitura Aberta , Retina/metabolismo , Retinose Pigmentar/metabolismo
7.
Lab Invest ; 96(3): 283-95, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26568297

RESUMO

Adeno-associated virus (AAV) vector-mediated delivery of inhibitors of blood-retinal barrier breakdown (BRBB) offers promise for the treatment of diabetic macular edema. Here, we demonstrated a reversal of blood-retinal barrier pathology mediated by AAV type 2 (AAV2) vectors encoding vasoinhibin or soluble VEGF receptor 1 (sFlt-1) when administered intravitreally to diabetic rats. Efficacy and safety of the AAV2 vasoinhibin vector were tested by monitoring its effect on diabetes-induced changes in the retinal vascular bed and thickness, and in the electroretinogram (ERG). Also, the transduction of AAV2 vectors and expression of AAV2 receptors and co-receptors were compared between the diabetic and the non-diabetic rat retinas. AAV2 vasoinhibin or AAV2 sFlt-1 vectors were injected intravitreally before or after enhanced BRBB due to diabetes induced by streptozotocin. The BRBB was examined by the Evans blue method, the vascular bed by fluorescein angiography, expression of the AAV2 EGFP reporter vector by confocal microscopy, and the AAV2 genome, expression of transgenes, receptors, and co-receptors by quantitative PCR. AAV2 vasoinhibin and sFlt-1 vectors inhibited the diabetes-mediated increase in BRBB when injected after, but not before, diabetes was induced. The AAV2 vasoinhibin vector decreased retinal microvascular abnormalities and the diabetes-induced reduction of the B-wave of the ERG, but it had no effect in non-diabetic controls. Also, retinal thickness was not altered by diabetes or by the AAV2 vasoinhibin vector. The AAV2 genome, vasoinhibin and sFlt-1 transgenes, and EGFP levels were higher in the retinas from diabetic rats and were associated with an elevated expression of AAV2 receptors (syndecan, glypican, and perlecan) and co-receptors (fibroblast growth factor receptor 1, αvß5 integrin, and hepatocyte growth factor receptor). We conclude that retinal transduction and efficacy of AAV2 vectors are enhanced in diabetes, possibly due to their elevated cell entry. AAV2 vectors encoding vasoinhibin and sFlt-1 may be desirable gene therapeutics to target diabetic retinopathy and macular edema.


Assuntos
Proteínas de Ciclo Celular/genética , Dependovirus/genética , Diabetes Mellitus Experimental/terapia , Retinopatia Diabética/terapia , Terapia Genética , Retina/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Barreira Hematorretiniana , Vetores Genéticos , Proteoglicanas de Heparan Sulfato/análise , Masculino , Ratos , Ratos Wistar , Estreptozocina
8.
Proc Natl Acad Sci U S A ; 107(27): 12216-21, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20566880

RESUMO

The importance of identifying VEGF-independent pathways in pathological angiogenesis is increasingly recognized as a result of the emerging drug resistance to anti-VEGF therapies. PDGF-CC is the third member of the PDGF family discovered after more than two decades of studies on PDGF-AA and PDGF-BB. The biological function of PDGF-CC and the underlying cellular and molecular mechanisms remain largely unexplored. Here, using different animal models, we report that PDGF-CC inhibition by neutralizing antibody, shRNA, or genetic deletion suppressed both choroidal and retinal neovascularization. Importantly, we revealed that PDGF-CC targeting acted not only on multiple cell types important for pathological angiogenesis, such as vascular mural and endothelial cells, macrophages, choroidal fibroblasts and retinal pigment epithelial cells, but also on the expression of other important angiogenic genes, such as PDGF-BB and PDGF receptors. At a molecular level, we found that PDGF-CC regulated glycogen synthase kinase (GSK)-3beta phosphorylation and expression both in vitro and in vivo. Activation of GSK3beta impaired PDGF-CC-induced angiogenesis, and inhibition of GSK3beta abolished the antiangiogenic effect of PDGF-CC blockade. Thus, we identified PDGF-CC as an important candidate target gene for antiangiogenic therapy, and PDGF-CC inhibition may be of therapeutic value in treating neovascular diseases.


Assuntos
Linfocinas/genética , Neovascularização Patológica/genética , Fator de Crescimento Derivado de Plaquetas/genética , Interferência de RNA , Animais , Anticorpos Neutralizantes/farmacologia , Becaplermina , Western Blotting , Células Cultivadas , Embrião de Galinha , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/prevenção & controle , Feminino , Imunofluorescência , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Linfocinas/imunologia , Linfocinas/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neovascularização Patológica/prevenção & controle , Fosforilação , Fator de Crescimento Derivado de Plaquetas/imunologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-sis , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Mol Ther Methods Clin Dev ; 26: 61-71, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35782594

RESUMO

Recombinant adeno-associated virus (AAV) is an effective platform for therapeutic gene transfer; however, tissue-tropism differences between species are a challenge for successful translation of preclinical results to humans. We evaluated the use of in vitro primary hepatocyte cultures to predict in vivo liver-directed AAV expression in different species. We assessed whether in vitro AAV transduction assays in cultured primary hepatocytes from mice, nonhuman primates (NHPs), and humans could model in vivo liver-directed AAV expression of valoctocogene roxaparvovec (AAV5-hFVIII-SQ), an experimental gene therapy for hemophilia A with a hepatocyte-selective promoter. Relative levels of DNA and RNA in hepatocytes grown in vitro correlated with in vivo liver transduction across species. Expression in NHP hepatocytes more closely reflected expression in human hepatocytes than in mouse hepatocytes. We used this hepatocyte culture model to assess transduction efficacy of a novel liver-directed AAV capsid across species and identified which of 3 different canine factor VIII vectors produced the most transgene expression. Results were confirmed in vivo. Further, we determined mechanisms mediating inhibition of AAV5-hFVIII-SQ expression by concomitant isotretinoin using primary human hepatocytes. These studies support using in vitro primary hepatocyte models to predict species translatability of liver-directed AAV gene therapy and improve mechanistic understanding of drug-drug interactions.

10.
J Biol Chem ; 285(20): 15500-15510, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20231273

RESUMO

Platelet-derived growth factor-DD (PDGF-DD) is a recently discovered member of the PDGF family. The role of PDGF-DD in pathological angiogenesis and the underlying cellular and molecular mechanisms remain largely unexplored. In this study, using different animal models, we showed that PDGF-DD expression was up-regulated during pathological angiogenesis, and inhibition of PDGF-DD suppressed both choroidal and retinal neovascularization. We also demonstrated a novel mechanism mediating the function of PDGF-DD. PDGF-DD induced glycogen synthase kinase-3beta (GSK3beta) Ser(9) phosphorylation and Tyr(216) dephosphorylation in vitro and in vivo, leading to increased cell survival. Consistently, GSK3beta activity was required for the antiangiogenic effect of PDGF-DD targeting. Moreover, PDGF-DD regulated the expression of GSK3beta and many other genes important for angiogenesis and apoptosis. Thus, we identified PDGF-DD as an important target gene for antiangiogenic therapy due to its pleiotropic effects on vascular and non-vascular cells. PDGF-DD inhibition may offer new therapeutic options to treat neovascular diseases.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Linfocinas/metabolismo , Neovascularização Patológica/prevenção & controle , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Quinase 3 da Glicogênio Sintase/química , Glicogênio Sintase Quinase 3 beta , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Vasos Retinianos/patologia , Serina/metabolismo , Tirosina/metabolismo , Regulação para Cima
11.
Mol Ther ; 18(1): 80-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19904234

RESUMO

Adeno-associated virus (AAV) vector genomes have been limited to 5 kilobases (kb) in length because their packaging limit was thought to be similar to the size of the parent AAV genome. Recent reports claim that significantly larger vector genomes can be packaged intact. We examined the packaged vector genomes from plasmid-encoded AAV vectors that ranged from 4.7 to 8.7 kb in length, using AAV types 2, 5, and 8 capsids. Southern blot analysis indicated that packaged AAV vector genomes never exceeded 5.2 kb in length irrespective of the size of the plasmid-encoded vector or the capsid type. This result was confirmed by vector genome probing with strand-specific oligonucleotides. The packaged vector genomes derived from plasmid-encoded vectors exceeding 5 kb were heterogeneous in length and truncated on the 5' end. Despite their truncated genomes, vector preparations produced from plasmid-encoded vectors exceeding 5.2 kb mediated reporter gene expression in vitro at high multiplicity of infection (MOI). The efficiency of expression was substantially lower than that of reporter vectors with genomes <5 kb in length. We propose that transcriptionally functional, intact vector genomes are generated in cells transduced at high MOI from the fragmentary genomes of these larger vectors, probably by recombination.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Genoma Viral/genética , Montagem de Vírus/fisiologia , Southern Blotting , Linhagem Celular , Eletroforese , Humanos , Immunoblotting , Montagem de Vírus/genética
12.
Linacre Q ; 81(4): 298-301, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25473129
13.
Cell Rep ; 25(3): 611-623.e6, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332642

RESUMO

Mutations in CEP290 cause ciliogenesis defects, leading to diverse clinical phenotypes, including Leber congenital amaurosis (LCA). Gene therapy for CEP290-associated diseases is hindered by the 7.4 kb CEP290 coding sequence, which is difficult to deliver in vivo. The multi-domain structure of the CEP290 protein suggests that a specific CEP290 domain may complement disease phenotypes. Thus, we constructed AAV vectors with overlapping CEP290 regions and evaluated their impact on photoreceptor degeneration in Cep290rd16/rd16 and Cep290rd16/rd16;Nrl-/- mice, two models of CEP290-LCA. One CEP290 fragment (the C-terminal 989 residues, including the domain deleted in mutant mice) reconstituted CEP290 function and resulted in cone preservation and delayed rod death. The CEP290 C-terminal domain also improved cilia phenotypes in mouse embryonic fibroblasts and iPSC-derived retinal organoids carrying the Cep290rd16 mutation. Our study strongly argues for in trans complementation of CEP290 mutations by a cognate fragment and suggests therapeutic avenues.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Terapia Genética , Amaurose Congênita de Leber/terapia , Mutação , Retina/citologia , Degeneração Retiniana/terapia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Cílios/metabolismo , Cílios/patologia , Dependovirus/genética , Modelos Animais de Doenças , Proteínas do Olho/fisiologia , Feminino , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/patologia , Masculino , Camundongos , Camundongos Knockout , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana/genética , Degeneração Retiniana/patologia
14.
J Virol Methods ; 140(1-2): 183-92, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17196264

RESUMO

Adeno-associated virus (AAV) empty capsids typically co-purify with genome containing AAV2 vectors purified by column chromatography. This study describes a method to remove empty capsids from genome containing vector particles by anion exchange chromatography. The separation is based on the slightly less anionic character of empty particles compared to vectors. Detailed methods to achieve AAV2 vector purification and particle separation using cation exchange resin POROS 50HS followed by anion exchange resin Q-Sepharose(xl) are described. Chromatographic separation of AAV2 particles was achieved using gradients based on sodium acetate and ammonium acetate, and was optimal at pH 8.5. Efficient removal of particle surface nucleic acid impurities was found to be important to achieve good particle separation. In a large scale experiment performed using partially purified vector containing a mixture of 1.56 x 10(14)vg and 2.52 x 10(15) empty capsids as a starting material, the optimized anion exchange chromatography method resulted in a vector peak of 1.15 x 10(14)vg containing 0.25 x 10(14) empty capsids, corresponding to 74% vector yield and 86-fold reduction in empty capsids in the vector product.


Assuntos
Cromatografia por Troca Iônica/métodos , Dependovirus/isolamento & purificação , Vetores Genéticos/isolamento & purificação , Vírion , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Dependovirus/classificação , Dependovirus/genética , Vetores Genéticos/ultraestrutura , Concentração de Íons de Hidrogênio , Vírion/ultraestrutura
15.
Hum Gene Ther ; 27(5): 376-89, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27036983

RESUMO

Gene therapy for inherited retinal diseases has been shown to ameliorate functional and structural defects in both animal models and in human clinical trials. X-linked retinoschisis (XLRS) is an early-age onset macular dystrophy resulting from loss of an extracellular matrix protein (RS1). In preparation for a human clinical gene therapy trial, we conducted a dose-range efficacy study of the clinical vector, a self-complementary AAV delivering a human retinoschisin (RS1) gene under control of the RS1 promoter and an interphotoreceptor binding protein enhancer (AAV8-scRS/IRBPhRS), in the retinoschisin knockout (Rs1-KO) mouse. The therapeutic vector at 1 × 10(6) to 2.5 × 10(9) (1E6-2.5E9) vector genomes (vg)/eye or vehicle was administered to one eye of 229 male Rs1-KO mice by intravitreal injection at 22 ± 3 days postnatal age (PN). Analysis of retinal function (dark-adapted electroretinogram, ERG), structure (cavities and outer nuclear layer thickness) by in vivo retinal imaging using optical coherence tomography, and retinal immunohistochemistry (IHC) for RS1 was done 3-4 months and/or 6-9 months postinjection (PI). RS1 IHC staining was dose dependent across doses ≥1E7 vg/eye, and the threshold for significant improvement in all measures of retinal structure and function was 1E8 vg/eye. Higher doses, however, did not produce additional improvement. At all doses showing efficacy, RS1 staining in Rs1-KO mouse was less than that in wild-type mice. Improvement in the ERG and RS1 staining was unchanged or greater at 6-9 months than at 3-4 months PI. This study demonstrates that vitreal administration of AAV8 scRS/IRBPhRS produces significant improvement in retinal structure and function in the mouse model of XLRS over a vector dose range that can be extended to a human trial. It indicates that a fully normal level of RS1 expression is not necessary for a therapeutic effect.


Assuntos
Moléculas de Adesão Celular/genética , Dependovirus/genética , Proteínas do Olho/genética , Genes Ligados ao Cromossomo X , Terapia Genética , Vetores Genéticos/genética , Retinosquise/genética , Animais , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho/metabolismo , Expressão Gênica , Vetores Genéticos/administração & dosagem , Imuno-Histoquímica , Injeções Intravítreas , Masculino , Camundongos , Camundongos Knockout , Retina/metabolismo , Retina/patologia , Retina/fisiopatologia , Retinosquise/diagnóstico , Retinosquise/metabolismo , Retinosquise/terapia , Fatores de Tempo , Tomografia de Coerência Óptica , Transdução Genética
16.
Mol Ther Methods Clin Dev ; 5: 16011, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27626041

RESUMO

X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding the protein retinoschisin (RS1) and is one of the most common causes of macular degeneration in young men. Our therapeutic approach for XLRS is based on the administration of AAV8-scRS/IRBPhRS, an adeno-associated viral vector coding the human RS1 protein, via the intravitreal (IVT) route. Two Good Laboratory Practice studies, a 9-month study in New Zealand White rabbits (n = 124) injected with AAV8-scRS/IRBPhRS at doses of 2E9, 2E10, 2E11, and 1.5E12 vector genomes/eye (vg/eye), and a 6-month study in Rs1-KO mice (n = 162) dosed with 2E9 and 2E10 vg/eye of the same vector were conducted to assess ocular and systemic safety. A self-resolving, dose-dependent vitreal inflammation was the main ocular finding, and except for a single rabbit dosed with 1.5E12 vg/eye, which showed a retinal detachment, no other ocular adverse event was reported. Systemic toxicity was not identified in either species. Biodistribution analysis in Rs1-KO mice detected spread of vector genome in extraocular tissues, but no evidence of organ or tissues damage was found. These studies indicate that IVT administration of AAV8-scRS/IRBPhRS is safe and well tolerated and support its advancement into a phase 1/2a clinical trial for XLRS.

17.
Hum Gene Ther Methods ; 25(1): 83-91, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24191872

RESUMO

Laser photocoagulation is a well-established treatment modality for retinal disease. Discrete laser burns can be placed anywhere in the retina, singly or multiply, and the burn intensity is controllable. This study investigates the effect of prior laser photocoagulation on the retinal transduction properties of intravitreally administered adeno-associated viral (AAV) vectors. C57BL/6J mice were subjected to unilateral laser photocoagulation 48 hr before bilateral intravitreal injection of self-complementary cytomegaloviral enhanced green fluorescent protein (EGFP) vectors packaged in AAV type 2, 5, and 8 capsids. The eyes were enucleated 4 weeks after injection and examined by histochemistry and quantitative image analysis. Laser pretreatment resulted in substantially increased localized transduction around the burn site for all AAV capsid types. Without laser pretreatment, the vectors transduced only ganglion cells (AAV2) or sporadic cells around the optic nerve head (AAV5 and AAV8). Laser pretreatment increased AAV2 vector expression throughout the entire retina and focally at the burn site. Transduced cells at the burn site included retinal pigment epithelium (RPE), photoreceptors, Müller cells, inner nuclear layer cells, and retinal ganglion cells. The AAV5 vector showed increased RPE transduction at the burn site only. The AAV8 vector showed augmented expression in RPE, photoreceptors, and Müller cells around the burn site. Migrating RPE cells, present in the neural retina near the burn site, were also transduced by all three capsid types as evidenced by colocalization of EGFP and cytokeratin. Laser photocoagulation can be used to precisely direct AAV vector transduction to discrete locations in the retina. A combination of laser and AAV-mediated gene expression may allow the development of improved therapies for diabetic retinopathy, branch and central vein occlusion, and age-related macular degeneration.


Assuntos
Dependovirus/genética , Vetores Genéticos/metabolismo , Retina/metabolismo , Animais , Expressão Gênica , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fotocoagulação a Laser , Camundongos , Camundongos Endogâmicos C57BL , Retina/patologia , Células Ganglionares da Retina/metabolismo , Transdução Genética
18.
Hum Gene Ther Clin Dev ; 25(4): 202-11, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25211193

RESUMO

X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding the protein retinoschisin (RS1) and one of the most common causes of macular degeneration in young men. Currently, no FDA-approved treatments are available for XLRS and a replacement gene therapy could provide a promising strategy. We have developed a novel gene therapy approach for XLRS, based on the administration of AAV8-scRS/IRBPhRS, an adeno-associated viral vector coding the human RS1 protein, via the intravitreal route. On the basis of our prior study in an Rs1-KO mouse, this construct transduces efficiently all the retinal layers, resulting in an RS1 expression similar to that observed in the wild-type and improving retinal structure and function. In support of a clinical trial, we carried out a study to evaluate the ocular safety of intravitreal administration of AAV8-scRS/IRBPhRS into 39 New Zealand White rabbits. Two dose levels of vector, 2e(10) and 2e(11) vector genomes per eye (vg/eye), were tested and ocular inflammation was monitored over a 12-week period by serial ophthalmological and histopathological analysis. A mild ocular inflammatory reaction, consisting mainly of vitreous infiltrates, was observed within 4 weeks from injection, in both 2e(10) and 2e(11) vg/eye groups and was likely driven by the AAV8 capsid. At 12-week follow-up, ophthalmological examination revealed no clinical signs of vitreitis in either of the dose groups. However, while vitreous inflammatory infiltrate was significantly reduced in the 2e(10) vg/eye group at 12 weeks, some rabbits in the higher dose group still showed persistence of inflammatory cells, histologically. In conclusion, intravitreal administration of AAV8-scRS/IRBPhRS into the rabbit eye produces a mild and transient intraocular inflammation that resolves, at a 2e(10) vg/eye dose, within 3 months, and does not cause irreversible tissue damages. These data support the initiation of a clinical trial of intravitreal administration of AAV8-scRS/IRBPhRS in XLRS patients.


Assuntos
DNA Recombinante/efeitos adversos , Dependovirus/genética , Proteínas do Olho/genética , Terapia Genética , Vetores Genéticos/efeitos adversos , Retinosquise/terapia , Animais , DNA Recombinante/administração & dosagem , DNA Recombinante/genética , Dependovirus/metabolismo , Proteínas do Olho/metabolismo , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Injeções Intravítreas , Coelhos
19.
PLoS One ; 7(5): e35865, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563472

RESUMO

Animal models of human disease are an invaluable component of studies aimed at understanding disease pathogenesis and therapeutic possibilities. Mutations in the gene encoding retinitis pigmentosa GTPase regulator (RPGR) are the most common cause of X-linked retinitis pigmentosa (XLRP) and are estimated to cause 20% of all retinal dystrophy cases. A majority of RPGR mutations are present in ORF15, the purine-rich terminal exon of the predominant splice-variant expressed in retina. Here we describe the genetic and phenotypic characterization of the retinal degeneration 9 (Rd9) strain of mice, a naturally occurring animal model of XLRP. Rd9 mice were found to carry a 32-base-pair duplication within ORF15 that causes a shift in the reading frame that introduces a premature-stop codon. Rpgr ORF15 transcripts, but not protein, were detected in retinas from Rd9/Y male mice that exhibited retinal pathology, including pigment loss and slowly progressing decrease in outer nuclear layer thickness. The levels of rhodopsin and transducin in rod outer segments were also decreased, and M-cone opsin appeared mislocalized within cone photoreceptors. In addition, electroretinogram (ERG) a- and b-wave amplitudes of both Rd9/Y male and Rd9/Rd9 female mice showed moderate gradual reduction that continued to 24 months of age. The presence of multiple retinal features that correlate with findings in individuals with XLRP identifies Rd9 as a valuable model for use in gaining insight into ORF15-associated disease progression and pathogenesis, as well as accelerating the development and testing of therapeutic strategies for this common form of retinal dystrophy.


Assuntos
Proteínas de Transporte/genética , Modelos Animais de Doenças , Proteínas do Olho/genética , Mutação , Retinose Pigmentar/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Transporte/metabolismo , Eletrorretinografia , Éxons/genética , Proteínas do Olho/metabolismo , Feminino , Humanos , Immunoblotting , Imuno-Histoquímica , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Dados de Sequência Molecular , Retina/metabolismo , Retina/patologia , Retina/fisiopatologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rodopsina/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
20.
Invest Ophthalmol Vis Sci ; 52(12): 8944-50, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22003113

RESUMO

PURPOSE: Specific proteolytic cleavages of the hormone prolactin (PRL) generate vasoinhibins, a family of peptides (including 16-kDa PRL) that are able to inhibit the pathologic increase in retinal vasopermeability (RVP) associated with diabetes. Here the authors tested the ability of an adenoassociated virus type 2 (AAV2) vasoinhibin vector to inhibit vascular endothelial growth factor (VEGF)- and diabetes-induced RVP. METHODS: AAV2 vectors encoding vasoinhibin, PRL, or soluble VEGF receptor 1 (soluble FMS-like tyrosine kinase-1 [sFlt-1]) were injected intravitreally into the eyes of rats. Four weeks later, either VEGF was injected intravitreally or diabetes was induced with streptozotocin. Tracer accumulation was evaluated as an index of RVP using fluorescein angiography or the Evans blue dye method. RT-PCR verified transgene expression in the retina, and the intravitreal injection of an AAV2 vector encoding green fluorescent protein revealed transduced cells in the retinal ganglion cell layer. In addition, Western blot analysis of AAV2-transduced HEK293 cells confirmed the expression and secretion of the vector-encoded proteins. RESULTS: The AAV2-vasoinhibin vector prevented the increase in tracer accumulation that occurs 24 hours after the intravitreal injection of VEGF. Diabetes induced a significant increase in tracer accumulation compared with nondiabetic controls. This increase was blocked by the AAV2-vasoinhibin vector and reduced by the AAV2-sFlt-1 vector. The AAV2-PRL vector had no effect. CONCLUSIONS: These results show that an AAV2-vasoinhibin vector prevents pathologic RVP and suggest it could have therapeutic value in patients with diabetic retinopathy.


Assuntos
Permeabilidade Capilar/genética , Proteínas de Ciclo Celular/genética , Dependovirus/genética , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/terapia , Terapia Genética/métodos , Albuminas/farmacocinética , Animais , Permeabilidade Capilar/efeitos dos fármacos , Corantes/farmacocinética , Dextranos/farmacocinética , Diabetes Mellitus Experimental/genética , Retinopatia Diabética/genética , Modelos Animais de Doenças , Azul Evans/farmacocinética , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Injeções Intravítreas , Masculino , Plasmídeos/genética , Ratos , Ratos Wistar , Hemorragia Retiniana/induzido quimicamente , Hemorragia Retiniana/genética , Hemorragia Retiniana/terapia , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa