Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(5): e0188822, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36975793

RESUMO

Zaïre ebolavirus (EBOV) causes Ebola virus disease (EVD), a devastating viral hemorrhagic fever in humans. Nonhuman primate (NHP) models of EVD traditionally use intramuscular infection with higher case fatality rates and reduced mean time-to-death compared to contact transmission typical of human cases of EVD. A cynomolgus macaque model of oral and conjunctival EBOV was used to further characterize the more clinically relevant contact transmission of EVD. NHPs challenged via the oral route had an overall 50% survival rate. NHPs challenged with a target dose of 1 × 102 PFU or 1 × 104 PFU of EBOV via the conjunctival route had 40% and 100% mortality, respectively. Classic signs of lethal EVD-like disease were observed in all NHPs that succumbed to EBOV infection including viremia, hematological abnormalities, clinical chemistries indicative of hepatic and renal disease, and histopathological findings. Evidence of EBOV viral persistence in the eye was observed in NHPs challenged via the conjunctival route. IMPORTANCE This study is the first to examine the Kikwit strain of EBOV, the most commonly used strain, in the gold-standard macaque model of infection. Additionally, this is the first description of the detection of virus in the vitreous fluid, an immune privileged site that has been proposed as a viral reservoir, following conjunctival challenge. The oral and conjunctival macaque challenge model of EVD described here more faithfully recapitulates the prodrome that has been reported for human EVD. This work paves the way for more advanced studies to model contact transmission of EVD, including early events in mucosal infection and immunity, as well as the establishment of persistent viral infection and the emergence from these reservoirs.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/transmissão , Macaca fascicularis , Modelos Animais de Doenças , Túnica Conjuntiva/virologia , Transmissão de Doença Infecciosa
2.
J Infect Dis ; 228(Suppl 7): S571-S581, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37348509

RESUMO

BACKGROUND: The primary route of infection by Ebola virus (EBOV) is through contact of mucosal surfaces. Few studies have explored infection of nonhuman primates (NHPs) via the oral mucosa, which is a probable portal of natural infection in humans. METHODS: To further characterize the pathogenesis of EBOV infection via the oral exposure route, we challenged cohorts of cynomolgus monkeys with low doses of EBOV variant Makona. RESULTS: Infection with 100 or 50 PFU of EBOV Makona via the oral route resulted in 50% and 83% lethality, respectively. Animals that progressed to fatal disease exhibited lymphopenia, marked coagulopathy, high viral loads, and increased levels of serum markers of inflammation and hepatic/renal injury. Survival in these cohorts was associated with milder fluctuations in leukocyte populations, lack of coagulopathy, and reduced or absent serum markers of inflammation and/or hepatic/renal function. Surprisingly, 2 surviving animals from the 100- and 50-PFU cohorts developed transient low-level viremia in the absence of other clinical signs of disease. Conversely, all animals in the 10 PFU cohort remained disease free and survived to the study end point. CONCLUSIONS: Our observations highlight the susceptibility of NHPs, and by extension, likely humans, to relatively low doses of EBOV via the oral route.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Animais , Modelos Animais de Doenças , Viremia , Macaca fascicularis , Biomarcadores
3.
J Infect Dis ; 228(Suppl 7): S604-S616, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37145930

RESUMO

BACKGROUND: Highly pathogenic filoviruses such as Ebola virus (EBOV) hold capacity for delivery by artificial aerosols, and thus potential for intentional misuse. Previous studies have shown that high doses of EBOV delivered by small-particle aerosol cause uniform lethality in nonhuman primates (NHPs), whereas only a few small studies have assessed lower doses in NHPs. METHODS: To further characterize the pathogenesis of EBOV infection via small-particle aerosol, we challenged cohorts of cynomolgus monkeys with low doses of EBOV variant Makona, which may help define risks associated with small particle aerosol exposures. RESULTS: Despite using challenge doses orders of magnitude lower than previous studies, infection via this route was uniformly lethal across all cohorts. Time to death was delayed in a dose-dependent manner between aerosol-challenged cohorts, as well as in comparison to animals challenged via the intramuscular route. Here, we describe the observed clinical and pathological details including serum biomarkers, viral burden, and histopathological changes leading to death. CONCLUSIONS: Our observations in this model highlight the striking susceptibility of NHPs, and likely humans, via small-particle aerosol exposure to EBOV and emphasize the need for further development of diagnostics and postexposure prophylactics in the event of intentional release via deployment of an aerosol-producing device.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Animais , Macaca fascicularis , Aerossóis , Carga Viral
4.
J Infect Dis ; 220(5): 735-742, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31053842

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) infection can result in chikungunya fever (CHIKF), a self-limited acute febrile illness that can progress to chronic arthralgic sequelae in a large percentage of patients. A new measles virus-vectored vaccine was developed to prevent CHIKF, and we tested it for immunogenicity and efficacy in a nonhuman primate model. METHODS: Nine cynomolgus macaques were immunized and boosted with the measles virus-vectored chikungunya vaccine or sham-vaccinated. Sera were taken at multiple times during the vaccination phase to assess antibody responses against CHIKV. Macaques were challenged with a dose of CHIKV previously shown to cause fever and viremia, and core body temperature, viremia, and blood cell and chemistry panels were monitored. RESULTS: The vaccine was well tolerated in all macaques, and all seroconverted (high neutralizing antibody [PRNT80 titers, 40-640] and enzyme-linked immunosorbent assay titers) after the boost. Furthermore, the vaccinated primates were protected against viremia, fever, elevated white blood cell counts, and CHIKF-associated cytokine changes after challenge with the virulent La Reunión CHIKV strain. CONCLUSIONS: These results further document the immunogenicity and efficacy of a measles-vectored chikungunya vaccine that shows promise in Phase I-II clinical trials. These findings are critical to human health because no vaccine to combat CHIKF is yet licensed.


Assuntos
Febre de Chikungunya/prevenção & controle , Imunogenicidade da Vacina/imunologia , Vacina contra Sarampo/imunologia , Sarampo/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Temperatura Corporal , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Humanos , Imunização Secundária , Macaca fascicularis/imunologia , Masculino , Vírus do Sarampo/imunologia , Vacinação , Viremia
5.
Artigo em Inglês | MEDLINE | ID: mdl-31307979

RESUMO

Quinacrine hydrochloride is a small-molecule, orally bioavailable drug that has been used clinically as an antimalarial and for many other applications. A machine learning model trained on Ebola virus (EBOV) screening data identified quinacrine as a potent (nanomolar) in vitro inhibitor. In the current study, quinacrine 25 mg/kg was shown to protect 70% of mice (statistically significant) from a lethal challenge with mouse-adapted EBOV with once-daily intraperitoneal dosing for 8 days.


Assuntos
Antimaláricos/farmacologia , Antivirais/farmacologia , Reposicionamento de Medicamentos , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Quinacrina/farmacologia , Animais , Células CACO-2 , Chlorocebus aethiops , Modelos Animais de Doenças , Ebolavirus/crescimento & desenvolvimento , Células HeLa , Doença pelo Vírus Ebola/mortalidade , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Análise de Sobrevida , Tilorona/farmacologia , Células Vero , Carga Viral/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-29133569

RESUMO

Tilorone dihydrochloride (tilorone) is a small-molecule, orally bioavailable drug that is used clinically as an antiviral outside the United States. A machine-learning model trained on anti-Ebola virus (EBOV) screening data previously identified tilorone as a potent in vitro EBOV inhibitor, making it a candidate for the treatment of Ebola virus disease (EVD). In the present study, a series of in vitro ADMET (absorption, distribution, metabolism, excretion, toxicity) assays demonstrated the drug has excellent solubility, high Caco-2 permeability, was not a P-glycoprotein substrate, and had no inhibitory activity against five human CYP450 enzymes (3A4, 2D6, 2C19, 2C9, and 1A2). Tilorone was shown to have 52% human plasma protein binding with excellent plasma stability and a mouse liver microsome half-life of 48 min. Dose range-finding studies in mice demonstrated a maximum tolerated single dose of 100 mg/kg of body weight. A pharmacokinetics study in mice at 2- and 10-mg/kg dose levels showed that the drug is rapidly absorbed, has dose-dependent increases in maximum concentration of unbound drug in plasma and areas under the concentration-time curve, and has a half-life of approximately 18 h in both males and females, although the exposure was ∼2.5-fold higher in male mice. Tilorone doses of 25 and 50 mg/kg proved efficacious in protecting 90% of mice from a lethal challenge with mouse-adapted with once-daily intraperitoneal (i.p.) dosing for 8 days. A subsequent study showed that 30 mg/kg/day of tilorone given i.p. starting 2 or 24 h postchallenge and continuing through day 7 postinfection was fully protective, indicating promising activity for the treatment of EVD.


Assuntos
Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Tilorona/farmacologia , Animais , Antivirais/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/efeitos dos fármacos
7.
Risk Anal ; 37(5): 943-957, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28121020

RESUMO

Survival models are developed to predict response and time-to-response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple-dose data set to predict the probability of death through specifying functions of dose response and the time between exposure and the time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline model) is an exponential dose-response model with a Weibull TTD distribution. Alternative models assessed use different underlying dose-response functions and use the assumption that, in a multiple-dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this article. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high-dose rabbit data sets. More accurate survival models depend upon future development of dose-response data sets specifically designed to assess potential multiple-dose effects on response and time-to-response. The process used in this article to develop the best-fitting survival model for exposure of rabbits to multiple aerosol doses of B. anthracis spores should have broad applicability to other host-pathogen systems and dosing schedules because the empirical modeling approach is based upon pathogen-specific empirically-derived parameters.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Bacillus anthracis , Medição de Risco/métodos , Algoritmos , Animais , Antraz , Modelos Animais de Doenças , Monitoramento Ambiental/métodos , Exposição por Inalação , Modelos Estatísticos , Coelhos , Esporos Bacterianos
8.
Viruses ; 16(4)2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675975

RESUMO

Lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV) share many genetic and biological features including subtle differences between pathogenic and apathogenic strains. Despite remarkable genetic similarity, the viscerotropic WE strain of LCMV causes a fatal LASV fever-like hepatitis in non-human primates (NHPs) while the mouse-adapted Armstrong (ARM) strain of LCMV is deeply attenuated in NHPs and can vaccinate against LCMV-WE challenge. Here, we demonstrate that internalization of WE is more sensitive to the depletion of membrane cholesterol than ARM infection while ARM infection is more reliant on endosomal acidification. LCMV-ARM induces robust NF-κB and interferon response factor (IRF) activation while LCMV-WE seems to avoid early innate sensing and failed to induce strong NF-κB and IRF responses in dual-reporter monocyte and epithelial cells. Toll-like receptor 2 (TLR-2) signaling appears to play a critical role in NF-κB activation and the silencing of TLR-2 shuts down IL-6 production in ARM but not in WE-infected cells. Pathogenic LCMV-WE infection is poorly recognized in early endosomes and failed to induce TLR-2/Mal-dependent pro-inflammatory cytokines. Following infection, Interleukin-1 receptor-associated kinase 1 (IRAK-1) expression is diminished in LCMV-ARM- but not LCMV-WE-infected cells, which indicates it is likely involved in the LCMV-ARM NF-κB activation. By confocal microscopy, ARM and WE strains have similar intracellular trafficking although LCMV-ARM infection appears to coincide with greater co-localization of early endosome marker EEA1 with TLR-2. Both strains co-localize with Rab-7, a late endosome marker, but the interaction with LCMV-WE seems to be more prolonged. These findings suggest that LCMV-ARM's intracellular trafficking pathway may facilitate interaction with innate immune sensors, which promotes the induction of effective innate and adaptive immune responses.


Assuntos
Imunidade Inata , Vírus da Coriomeningite Linfocítica , Internalização do Vírus , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Vírus da Coriomeningite Linfocítica/fisiologia , Animais , Humanos , Camundongos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Endossomos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Linhagem Celular , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Células Epiteliais/virologia , Células Epiteliais/imunologia
9.
Viruses ; 16(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39066263

RESUMO

Favipiravir is a ribonucleoside analogue that has been explored as a therapeutic for the treatment of Ebola Virus Disease (EVD). Promising data from rodent models has informed nonhuman primate trials, as well as evaluation in patients during the 2013-2016 West African EVD outbreak of favipiravir treatment. However, mixed results from these studies hindered regulatory approval of favipiravir for the indication of EVD. This study examined the influence of route of administration, duration of treatment, and treatment schedule of favipiravir in immune competent mouse and guinea pig models using rodent-adapted Zaire ebolavirus (EBOV). A dose of 300 mg/kg/day of favipiravir with an 8-day treatment was found to be fully effective at preventing lethal EVD-like disease in BALB/c mice regardless of route of administration (oral, intraperitoneal, or subcutaneous) or whether it was provided as a once-daily dose or a twice-daily split dose. Preclinical data generated in guinea pigs demonstrates that an 8-day treatment of 300 mg/kg/day of favipiravir reduces mortality following EBOV challenge regardless of route of treatment or duration of treatments for 8, 11, or 15 days. This work supports the future translational development of favipiravir as an EVD therapeutic.


Assuntos
Amidas , Antivirais , Modelos Animais de Doenças , Ebolavirus , Doença pelo Vírus Ebola , Camundongos Endogâmicos BALB C , Pirazinas , Animais , Amidas/uso terapêutico , Amidas/administração & dosagem , Amidas/farmacologia , Cobaias , Pirazinas/administração & dosagem , Pirazinas/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Camundongos , Ebolavirus/efeitos dos fármacos , Antivirais/administração & dosagem , Antivirais/uso terapêutico , Feminino , Vias de Administração de Medicamentos , Esquema de Medicação
10.
bioRxiv ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38826312

RESUMO

Chikungunya virus (CHIKV), which induces chikungunya fever and chronic arthralgia, is an emerging public health concern. Safe and efficient vaccination strategies are needed to prevent or mitigate virus-associated acute and chronic morbidities for preparation of future outbreaks. Eilat (EILV)/CHIKV, a chimeric alphavirus which contains the structural proteins of CHIKV and the non-structural proteins of EILV, does not replicate in vertebrate cells. The chimeric virus was previously reported to induce protective adaptive immunity in mice. Here, we assessed the capacity of the virus to induce quick and durable protection in cynomolgus macaques. EILV/CHIKV protected macaques from wild-type (WT) CHIKV infection one year after a single dose vaccination. Transcriptome and in vitro functional analyses reveal that the chimeric virus triggered toll-like receptor signaling and T cell, memory B cell and antibody responses in a dose-dependent manner. Notably, EILV/CHIKV preferentially induced more durable, robust, and broader repertoire of CHIKV-specific T cell responses, compared to a live attenuated CHIKV 181/25 vaccine strain. The insect-based chimeric virus did not cause skin hypersensitivity reactions in guinea pigs sensitized to mosquito bites. Furthermore, EILV/CHIKV induced strong neutralization antibodies and protected cynomolgus macaques from WT CHIKV infection within six days post vaccination. Transcriptome analysis also suggest that the chimeric virus induction of multiple innate immune pathways, including Toll-like receptor signaling, type I IFN and IL-12 signaling, antigen presenting cell activation, and NK receptor signaling. Our findings suggest that EILV/CHIKV is a safe, highly efficacious vaccine, and provides both rapid and long-lasting protection in cynomolgus macaques.

11.
Antimicrob Agents Chemother ; 57(11): 5684-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23979731

RESUMO

Bacillus anthracis toxins can be neutralized by antibodies against protective antigen (PA), a component of anthrax toxins. Anthrivig (human anthrax immunoglobulin), also known as AIGIV, derived from plasma of humans immunized with BioThrax (anthrax vaccine adsorbed), is under development for the treatment of toxemia following exposure to anthrax spores. The pharmacokinetics (PK) of AIGIV was assessed in naive animals and healthy human volunteers, and the efficacy of AIGIV was assessed in animals exposed via inhalation to aerosolized B. anthracis spores. In the clinical study, safety, tolerability, and PK were evaluated in three dose cohorts (3.5, 7.1, and 14.2 mg/kg of body weight of anti-PA IgG) with 30 volunteers per cohort. The elimination half-life of AIGIV in rabbits, nonhuman primates (NHPs), and humans following intravenous infusion was estimated to be approximately 4, 12, and 24 days, respectively, and dose proportionality was observed. In a time-based treatment study, AIGIV protected 89 to 100% of animals when administered 12 h postexposure; however, a lower survival rate of 39% was observed when animals were treated 24 h postexposure, underscoring the need for early intervention. In a separate set of studies, animals were treated on an individual basis upon detection of a clinical sign or biomarker of disease, namely, a significant increase in body temperature (SIBT) in rabbits and presence of PA in the serum of NHPs. In these trigger-based intervention studies, AIGIV induced up to 75% survival in rabbits depending on the dose and severity of toxemia at the time of treatment. In NHPs, up to 33% survival was observed in AIGIV-treated animals. (The clinical study has been registered at ClinicalTrials.gov under registration no. NCT00845650.).


Assuntos
Vacinas contra Antraz/administração & dosagem , Antraz/prevenção & controle , Anticorpos Antibacterianos/administração & dosagem , Bacillus anthracis/efeitos dos fármacos , Imunoglobulinas Intravenosas/farmacocinética , Infecções Respiratórias/prevenção & controle , Esporos Bacterianos/efeitos dos fármacos , Animais , Antraz/imunologia , Antraz/microbiologia , Antraz/mortalidade , Vacinas contra Antraz/imunologia , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/isolamento & purificação , Antígenos de Bactérias/sangue , Antígenos de Bactérias/imunologia , Bacillus anthracis/imunologia , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/sangue , Toxinas Bacterianas/imunologia , Biomarcadores/análise , Método Duplo-Cego , Feminino , Meia-Vida , Humanos , Imunoglobulinas Intravenosas/imunologia , Imunoglobulinas Intravenosas/isolamento & purificação , Infusões Intravenosas , Macaca fascicularis , Masculino , Coelhos , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/mortalidade , Esporos Bacterianos/imunologia , Esporos Bacterianos/patogenicidade , Análise de Sobrevida , Fatores de Tempo , Vacinação
12.
Antiviral Res ; 209: 105492, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535309

RESUMO

Molnupiravir (EIDD-2801) is a prodrug of a ribonucleoside analogue that is currently being used under a US FDA emergency use authorization for the treatment of mild to moderate COVID-19. We evaluated molnupiravir for efficacy as an oral treatment in the rhesus macaque model of SARS-CoV-2 infection. Twenty non-human primates (NHPs) were challenged with SARS-CoV-2 and treated with 75 mg/kg (n = 8) or 250 mg/kg (n = 8) of molnupiravir twice daily by oral gavage for 7 days. The NHPs were observed for 14 days post-challenge and monitored for clinical signs of disease. After challenge, all groups showed a trend toward increased respiration rates. Treatment with molnupiravir significantly reduced viral RNA levels in bronchoalveolar lavage (BAL) samples at Days 7 and 10. Considering the mild to moderate nature of SARS-CoV-2 infection in the rhesus macaque model, this study highlights the importance of monitoring the viral load in the lung as an indicator of pharmaceutical efficacy for COVID-19 treatments. Additionally, this study provides evidence of the efficacy of molnupiravir which supplements the current ongoing clinical trials of this drug.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Macaca mulatta , Citidina/farmacologia , Citidina/uso terapêutico
13.
Antiviral Res ; 209: 105453, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379378

RESUMO

The unprecedented magnitude of the 2013-2016 Ebola virus (EBOV) epidemic in West Africa resulted in over 11 000 deaths and spurred an international public health emergency. A second outbreak in 2018-2020 in DRC resulted in an additional >3400 cases and nearly 2300 deaths (WHO, 2020). These large outbreaks across geographically diverse regions highlight the need for the development of effective oral therapeutic agents that can be easily distributed for self-administration to populations with active disease or at risk of infection. Herein, we report the in vivo efficacy of N4-hydroxycytidine (EIDD-1931), a broadly active ribonucleoside analog and the active metabolite of the prodrug EIDD-2801 (molnupiravir), in murine models of lethal EBOV infection. Twice daily oral dosing with EIDD-1931 at 200 mg/kg for 7 days, initiated either with a prophylactic dose 2 h before infection, or as therapeutic treatment starting 6 h post-infection, resulted in 92-100% survival of mice challenged with lethal doses of EBOV, reduced clinical signs of Ebola virus disease (EVD), reduced serum virus titers, and facilitated weight loss recovery. These results support further investigation of molnupiravir as a potential therapeutic or prophylactic treatment for EVD.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Ribonucleosídeos , Animais , Camundongos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Antivirais/farmacologia , Antivirais/uso terapêutico , Ribonucleosídeos/farmacologia
14.
Sci Rep ; 13(1): 4175, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914721

RESUMO

Transmission of Ebola virus (EBOV) primarily occurs via contact exposure of mucosal surfaces with infected body fluids. Historically, nonhuman primate (NHP) challenge studies have employed intramuscular (i.m.) or small particle aerosol exposure, which are largely lethal routes of infection, but mimic worst-case scenarios such as a needlestick or intentional release, respectively. When exposed by more likely routes of natural infection, limited NHP studies have shown delayed onset of disease and reduced mortality. Here, we performed a series of systematic natural history studies in cynomolgus macaques with a range of conjunctival exposure doses. Challenge with 10,000 plaque forming units (PFU) of EBOV was uniformly lethal, whereas 5/6 subjects survived lower dose challenges (100 or 500 PFU). Conjunctival challenge resulted in a protracted time-to death compared to i.m. Asymptomatic infection was observed in survivors with limited detection of EBOV replication. Inconsistent seropositivity in survivors may suggest physical or natural immunological barriers are sufficient to prevent widespread viral dissemination.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Macaca fascicularis , Túnica Conjuntiva , Primatas
15.
Viruses ; 14(10)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36298846

RESUMO

The Biomedical Advanced Research and Development Authority, part of the Administration for Strategic Preparedness and Response within the U.S. Department of Health and Human Services, recognizes that the evaluation of medical countermeasures under the Animal Rule requires well-characterized and reproducible animal models that are likely to be predictive of clinical benefit. Marburg virus (MARV), one of two members of the genus Marburgvirus, is characterized by a hemorrhagic fever and a high case fatality rate for which there are no licensed vaccines or therapeutics available. This natural history study consisted of twelve cynomolgus macaques challenged with 1000 PFU of MARV Angola and observed for body weight, temperature, viremia, hematology, clinical chemistry, and coagulation at multiple time points. All animals succumbed to disease within 8 days and exhibited signs consistent with those observed in human cases, including viremia, fever, systemic inflammation, coagulopathy, and lymphocytolysis, among others. Additionally, this study determined the time from exposure to onset of disease manifestations and the time course, frequency, and magnitude of the manifestations. This study will be instrumental in the design and development of medical countermeasures to Marburg virus disease.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Contramedidas Médicas , Humanos , Animais , Marburgvirus/fisiologia , Viremia , Macaca fascicularis
16.
Pathogens ; 10(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922476

RESUMO

The SARS-CoV-2 pandemic has inspired renewed interest in understanding the fundamental pathology of acute respiratory distress syndrome (ARDS) following infection. However, the pathogenesis of ARDS following SRAS-CoV-2 infection remains largely unknown. In the present study, we examined apoptosis in postmortem lung sections from COVID-19 patients and in lung tissues from a non-human primate model of SARS-CoV-2 infection, in a cell-type manner, including type 1 and 2 alveolar cells and vascular endothelial cells (ECs), macrophages, and T cells. Multiple-target immunofluorescence assays and Western blotting suggest both intrinsic and extrinsic apoptotic pathways are activated during SARS-CoV-2 infection. Furthermore, we observed that SARS-CoV-2 fails to induce apoptosis in human bronchial epithelial cells (i.e., BEAS2B cells) and primary human umbilical vein endothelial cells (HUVECs), which are refractory to SARS-CoV-2 infection. However, infection of co-cultured Vero cells and HUVECs or Vero cells and BEAS2B cells with SARS-CoV-2 induced apoptosis in both Vero cells and HUVECs/BEAS2B cells but did not alter the permissiveness of HUVECs or BEAS2B cells to the virus. Post-exposure treatment of the co-culture of Vero cells and HUVECs with a novel non-cyclic nucleotide small molecule EPAC1-specific activator reduced apoptosis in HUVECs. These findings may help to delineate a novel insight into the pathogenesis of ARDS following SARS-CoV-2 infection.

17.
Vaccines (Basel) ; 9(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070152

RESUMO

BACKGROUND: Persistent transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has given rise to a COVID-19 pandemic. Several vaccines, conceived in 2020, that evoke protective spike antibody responses are being deployed in mass public health vaccination programs. Recent data suggests, however, that as sequence variation in the spike genome accumulates, some vaccines may lose efficacy. METHODS: Using a macaque model of SARS-CoV-2 infection, we tested the efficacy of a peptide-based vaccine targeting MHC class I epitopes on the SARS-CoV-2 nucleocapsid protein. We administered biodegradable microspheres with synthetic peptides and adjuvants to rhesus macaques. Unvaccinated control and vaccinated macaques were challenged with 1 × 108 TCID50 units of SARS-CoV-2, followed by assessment of clinical symptoms and viral load, chest radiographs, and sampling of peripheral blood and bronchoalveolar lavage (BAL) fluid for downstream analysis. RESULTS: Vaccinated animals were free of pneumonia-like infiltrates characteristic of SARS-CoV-2 infection and presented with lower viral loads relative to controls. Gene expression in cells collected from BAL samples of vaccinated macaques revealed a unique signature associated with enhanced development of adaptive immune responses relative to control macaques. CONCLUSIONS: We demonstrate that a room temperature stable peptide vaccine based on known immunogenic HLA class I bound CTL epitopes from the nucleocapsid protein can provide protection against SARS-CoV-2 infection in nonhuman primates.

18.
Viruses ; 13(7)2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34372594

RESUMO

Currently there is no FDA-licensed vaccine or therapeutic against Sudan ebolavirus (SUDV) infections. The largest ever reported 2014-2016 West Africa outbreak, as well as the 2021 outbreak in the Democratic Republic of Congo, highlight the critical need for countermeasures against filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would greatly add to the screening of antivirals and vaccines. Here, we infected signal transducer and activator of transcription-1 knock out (STAT-1 KO) mice with five different wildtype filoviruses to determine susceptibility. SUDV and Marburg virus (MARV) were the most virulent, and caused 100% or 80% lethality, respectively. Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Taï Forest ebolavirus (TAFV) caused 40%, 20%, and no mortality, respectively. Further characterization of SUDV in STAT-1 KO mice demonstrated lethality down to 3.1 × 101 pfu. Viral genomic material was detectable in serum as early as 1 to 2 days post-challenge. The onset of viremia was closely followed by significant changes in total white blood cells and proportion of neutrophils and lymphocytes, as well as by an influx of neutrophils in the liver and spleen. Concomitant significant fluctuations in blood glucose, albumin, globulin, and alanine aminotransferase were also noted, altogether consistent with other models of filovirus infection. Finally, favipiravir treatment fully protected STAT-1 KO mice from lethal SUDV challenge, suggesting that this may be an appropriate small animal model to screen anti-SUDV countermeasures.


Assuntos
Modelos Animais de Doenças , Ebolavirus/genética , Camundongos Knockout , Fator de Transcrição STAT1/genética , Amidas/uso terapêutico , Animais , Anticorpos Antivirais/sangue , Antivirais/uso terapêutico , Ebolavirus/classificação , Ebolavirus/efeitos dos fármacos , Ebolavirus/patogenicidade , Feminino , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Masculino , Camundongos , Pirazinas/uso terapêutico , Proteínas Virais/genética
19.
Pathogens ; 10(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806375

RESUMO

Recent studies have shown the domestic ferret (Mustela putorius furo) to be a promising small animal model for the study of Ebola virus (EBOV) disease and medical countermeasure evaluation. To date, most studies have focused on traditional challenge routes, predominantly intramuscular and intranasal administration. Here, we present results from a non-clinical pathogenicity study examining oronasal, oral, and ocular mucosal challenge routes in ferrets. Animals were challenged with 1, 10, or 100 plaque forming units EBOV followed by monitoring of disease progression and biosampling. Ferrets administered virus via oronasal and oral routes met euthanasia criteria due to advanced disease 5-10 days post-challenge. Conversely, all ferrets dosed via the ocular route survived until the scheduled study termination 28-day post-challenge. In animals that succumbed to disease, a dose/route response was not observed; increases in disease severity, febrile responses, serum and tissue viral load, alterations in clinical pathology, and gross/histopathology findings were similar between subjects. Disease progression in ferrets challenged via ocular administration was unremarkable throughout the study period. Results from this study further support the ferret as a model for EBOV disease following oral and nasal mucosa exposure.

20.
PLoS One ; 16(7): e0252874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34214118

RESUMO

Filoviruses (Family Filoviridae genera Ebolavirus and Marburgvirus) are negative-stranded RNA viruses that cause severe health effects in humans and non-human primates, including death. Except in outbreak settings, vaccines and other medical countermeasures against Ebola virus (EBOV) will require testing under the FDA Animal Rule. Multiple vaccine candidates have been evaluated using cynomolgus monkeys (CM) exposed to EBOV Kikwit strain. To the best of our knowledge, however, animal model development data supporting the use of CM in vaccine research have not been submitted to the FDA. This study describes a large CM database (122 CM, 62 female and 60 male, age 2 to 9 years) and demonstrates the consistency of the CM model through time to death models and descriptive statistics. CMs were exposed to EBOV doses of 0.1 to 100,000 PFU in 33 studies conducted at three Animal Biosafety Level 4 facilities, by three exposure routes. Time to death was modeled using Cox proportional hazards models with a frailty term that incorporated study-to-study variability. Despite significant differences attributed to exposure variables, all CMs exposed to the 100 to 1,000 pfu doses commonly used in vaccine studies died or met euthanasia criteria within 21 days of exposure, median 7 days, 93% between 5 and 12 days of exposure. Moderate clinical signs were observed 4 to 5 days after exposure and preceded death or euthanasia by approximately one day. Viremia was detected within a few days of infection. Hematology indices were indicative of viremia and the propensity for hemorrhage with progression of Ebola viremia. Changes associated with coagulation parameters and platelets were consistent with coagulation disruption. Changes in leukocyte profiles were indicative of an acute inflammatory response. Increased liver enzymes were observed shortly after exposure. Taken together, these factors suggest that the cynomolgus monkey is a reliable animal model for human disease.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola , Animais , Modelos Animais de Doenças , Surtos de Doenças , Feminino , Macaca fascicularis , Masculino , Reprodutibilidade dos Testes , Carga Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa