Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 98(7): 2598-2606, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29064558

RESUMO

BACKGROUND: In the present study high-brightness light-emitting diodes were used to investigate the influence of different light spectra on garlic discoloration at different humidity levels and temperature. Many processes involved in the discoloration process of garlic/leek during storage under different conditions remain unanswered. For this reason in this study the ability of specific light spectra to enhance the production of desirable pigments has been evaluated in elephant garlic. It is well known that the pigments involved in the discoloration reaction are of great interest because of their potential ability to increase the nutritional value and health benefits of the food. RESULTS: In the present study, we show how the chlorophyll content of the sprout increases directly proportionally to the wavelength of the light tested; green/blue light delays the greening process of garlic young shoots whilst red/infra-red light irradiance conditions increase the greening process at different storage temperatures and humidity. Moreover different lights in the visible spectrum have been observed to stimulate and enhance the outer layer purple coloration. CONCLUSION: The use of different lights to modulate garlic pigmentation has been demonstrated and, in particular, the utilisation of red/green/blue lights and lower temperature resulted in higher red/pink pigments production supporting the hypothesis that this process involves more than one light to be fully performed and the low temperature is a condition that influences the formation of these products. © 2017 Society of Chemical Industry.


Assuntos
Alho/química , Alho/efeitos da radiação , Pigmentos Biológicos/análise , Clorofila/análise , Clorofila/metabolismo , Cor , Armazenamento de Alimentos , Alho/metabolismo , Pigmentos Biológicos/metabolismo , Temperatura
2.
J Sci Food Agric ; 95(8): 1757-63, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24871623

RESUMO

BACKGROUND: Proton transfer reaction-mass spectrometry (PTR-MS), in its recently developed implementation based on time-of-flight mass spectrometry (PTR-TOFMS), was used to rapidly determine the volatile compounds present in fruits of Capsicum spp. RESULTS: We analyzed the volatile organic compounds emission profile of freshly cut chili peppers belonging to three species and 33 different cultivars. PTR-TOFMS data, analyzed with appropriate and advanced multivariate class-modeling approaches, perfectly discriminated among the three species (100% correct classification in validation set). VIP (variable importance in projection) scores were used to select the 15 most important volatile compounds in discriminating the species. The best candidates for Capsicum spp. were compounds with measured m/z of 63.027, 101.096 and 107.050, which were, respectively, tentatively identified as dimethyl sulfide, hexanal and benzaldehyde. CONCLUSIONS: Based on the promising results, the possibility of introducing multivariate class-modeling techniques, different from the classification approaches, in the field of volatile compounds analyses is discussed.


Assuntos
Capsicum/química , Capsicum/classificação , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Análise Discriminante , Frutas/química , Análise dos Mínimos Quadrados , Especificidade da Espécie
3.
Plants (Basel) ; 13(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674539

RESUMO

Chili is a globally significant spice used fresh or dried for culinary, condiment, and medicinal purposes. Growing concerns about food safety have increased the demand for high-quality products and non-invasive tools for quality control like origin tracing and safety assurance. Volatile analysis offers a rapid, comprehensive, and safe method for characterizing various food products. Thus, this study aims to assess the impact of the drying process on the aromatic composition of various Capsicum species and to identify key compounds driving the aromatic complexity of each genetic makeup. To accomplish these objectives, the aroma was examined in fruits collected from 19 different pepper accessions (Capsicum sp.) belonging to four species: one ancestral (C. chacoense) and three domesticated pepper species (C. annuum, C. baccatum and C. chinense). Fresh and dried samples were analyzed using a headspace PTR-TOF-MS platform. Our findings reveal significant changes in the composition and concentration of volatile organic compounds (VOCs) from fresh to dried Capsicum. Notably, chili peppers of the species C. chinense consistently exhibited higher emission intensity and a more complex aroma compared to other species (both fresh and dried). Overall, the data clearly demonstrate that the drying process generally leads to a reduction in the intensity and complexity of the aromatic compounds emitted. Specifically, fresh peppers showed higher volatile organic compounds content compared to dried ones, except for the two sweet peppers studied, which exhibited the opposite behavior. Our analysis underscores the variability in the effect of drying on volatile compound composition among different pepper species and even among different cultivars, highlighting key compounds that could facilitate species classification in dried powder. This research serves as a preliminary guide for promoting the utilization of various pepper species and cultivars as powder, enhancing product valorization.

4.
Appl Environ Microbiol ; 75(16): 5396-404, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19561177

RESUMO

Sinorhizobium meliloti is a soil bacterium that fixes atmospheric nitrogen in plant roots. The high genetic diversity of its natural populations has been the subject of extensive analysis. Recent genomic studies of several isolates revealed a high content of variable genes, suggesting a correspondingly large phenotypic differentiation among strains of S. meliloti. Here, using the Phenotype MicroArray (PM) system, hundreds of different growth conditions were tested in order to compare the metabolic capabilities of the laboratory reference strain Rm1021 with those of four natural S. meliloti isolates previously analyzed by comparative genomic hybridization (CGH). The results of PM analysis showed that most phenotypic differences involved carbon source utilization and tolerance to osmolytes and pH, while fewer differences were scored for nitrogen, phosphorus, and sulfur source utilization. Only the variability of the tested strain in tolerance to sodium nitrite and ammonium sulfate of pH 8 was hypothesized to be associated with the genetic polymorphisms detected by CGH analysis. Colony and cell morphologies and the ability to nodulate Medicago truncatula plants were also compared, revealing further phenotypic diversity. Overall, our results suggest that the study of functional (phenotypic) variability of S. meliloti populations is an important and complementary step in the investigation of genetic polymorphism of rhizobia and may help to elucidate rhizobial evolutionary dynamics, including adaptation to diverse environments.


Assuntos
DNA Bacteriano/análise , Medicago truncatula/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos , Sinorhizobium meliloti/classificação , Sinorhizobium meliloti/metabolismo , Técnicas de Tipagem Bacteriana , Meios de Cultura , Microscopia de Contraste de Fase , Fixação de Nitrogênio , Fenótipo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento , Microbiologia do Solo , Especificidade da Espécie
5.
Front Plant Sci ; 6: 1079, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26648960

RESUMO

Al(3+) toxicity in growing plants is considered as one of the major factors limiting the production of crops on acidic soils worldwide. In the last 15 years, it has been proposed that Al(3+) toxicity are mediated with distortion of the cellular signaling mechanisms such as calcium signaling pathways, and production of cytotoxic reactive oxygen species (ROS) causing oxidative damages. On the other hand, zinc is normally present in plants at high concentrations and its deficiency is one of the most widespread micronutrient deficiencies in plants. Earlier studies suggested that lack of zinc often results in ROS-mediated oxidative damage to plant cells. Previously, inhibitory action of Zn(2+) against lanthanide-induced superoxide generation in tobacco cells have been reported, suggesting that Zn(2+) interferes with the cation-induced ROS production via stimulation of NADPH oxidase. In the present study, the effect of Zn(2+) on Al(3+)-induced superoxide generation in the cell suspension cultures of tobacco (Nicotiana tabacum L., cell-line, BY-2) and rice (Oryza sativa L., cv. Nipponbare), was examined. The Zn(2+)-dependent inhibition of the Al(3+)-induced oxidative burst was observed in both model cells selected from the monocots and dicots (rice and tobacco), suggesting that this phenomenon (Al(3+)/Zn(2+) interaction) can be preserved in higher plants. Subsequently induced cell death in tobacco cells was analyzed by lethal cell staining with Evans blue. Obtained results indicated that presence of Zn(2+) at physiological concentrations can protect the cells by preventing the Al(3+)-induced superoxide generation and cell death. Furthermore, the regulation of the Ca(2+) signaling, i.e., change in the cytosolic Ca(2+) ion concentration, and the cross-talks among the elements which participate in the pathway were further explored.

6.
Plant Signal Behav ; 10(11): e1010919, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26418558

RESUMO

Impact of transition metals which catalyze the generation of reactive oxygen species (ROS), on activation of cell death signaling in plant cells have been documented to date. Similarly in green paramecia (Paramecium bursaria), an aquatic protozoan species harboring symbiotic green algae in the cytoplasm, toxicities of various metallic ions have been documented. We have recently examined the effects of double-stranded GC-rich DNA fragments with copper-binding nature and ROS removal catalytic activity as novel plant cell-protecting agents, using the suspension-cultured tobacco cells. Here, we show that above DNA oligomers protect the cells of green paramecia from copper-induced cell death, suggesting that the phenomenon firstly observed in tobacco cells is not limited only within higher plants but it could be universally observable in wider range of organisms.


Assuntos
Cobre/toxicidade , DNA/farmacologia , Paramecium/efeitos dos fármacos , Composição de Bases , Sequência de Bases , Morte Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Dados de Sequência Molecular , Paramecium/citologia
7.
Sci Rep ; 5: 7730, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25588706

RESUMO

Investigations carried out on maize roots under microgravity and hypergravity revealed that gravity conditions have strong effects on the network of plant electrical activity. Both the duration of action potentials (APs) and their propagation velocities were significantly affected by gravity. Similarly to what was reported for animals, increased gravity forces speed-up APs and enhance synchronized electrical events also in plants. The root apex transition zone emerges as the most active, as well as the most sensitive, root region in this respect.


Assuntos
Fenômenos Eletrofisiológicos , Gravitação , Meristema/fisiologia , Zea mays/fisiologia , Potenciais de Ação/fisiologia , Microeletrodos , Probabilidade
8.
Biomed Res Int ; 2014: 834134, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25197662

RESUMO

Oxygen influx showed an asymmetry in the transition zone of the root apex when roots were placed horizontally on ground. The influx increased only in the upper side, while no changes were detected in the division and in the elongation zone. Nitric oxide (NO) was also monitored after gravistimulation, revealing a sudden burst only in the transition zone. In order to confirm these results in real microgravity conditions, experiments have been set up by using parabolic flights and drop tower. The production of reactive oxygen species (ROS) was also monitored. Oxygen, NO, and ROS were continuously monitored during normal and hyper- and microgravity conditions in roots of maize seedlings. A distinct signal in oxygen and NO fluxes was clearly detected only in the apex zone during microgravity, with no significant changes in normal and in hypergravity conditions. The same results were obtained by ROS measurement. The detrimental effect of D'orenone, disrupting the polarised auxin transport, on the onset of the oxygen peaks during the microgravity period was also evaluated. Results indicates an active role of NO and ROS as messengers during the gravitropic response, with probable implications in the auxin redistribution.


Assuntos
Gravitação , Óxido Nítrico/metabolismo , Estresse Oxidativo , Raízes de Plantas/metabolismo , Transdução de Sinais , Zea mays/metabolismo , Análise de Variância , Respiração Celular/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oximetria , Oxigênio/farmacologia , Raízes de Plantas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Ausência de Peso , Zea mays/efeitos dos fármacos
9.
PLoS One ; 7(6): e38895, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723904

RESUMO

A main question for the study of collective motion in living organisms is the origin of orientational polar order, i.e., how organisms align and what are the benefits of such collective behaviour. In the case of micro-organisms swimming at a low Reynolds number, steric repulsion and long-range hydrodynamic interactions are not sufficient to explain a homogeneous polar order state in which the direction of motion is aligned. An external symmetry-breaking guiding field such as a mechanism of taxis appears necessary to understand this phonemonon. We have investigated the onset of polar order in the velocity field induced by phototaxis in a suspension of a motile micro-organism, the algae Chlamydomonas reinhardtii, for density values above the limit provided by the hydrodynamic approximation of a force dipole model. We show that polar order originates from a combination of both the external guiding field intensity and the population density. In particular, we show evidence for a linear dependence of a phototactic guiding field on cell density to determine the polar order for dense suspensions and demonstrate the existence of a density threshold for the origin of polar order. This threshold represents the density value below which cells undergoing phototaxis are not able to maintain a homogeneous polar order state and marks the transition to ordered collective motion. Such a transition is driven by a noise dominated phototactic reorientation where the noise is modelled as a normal distribution with a variance that is inversely proportional to the guiding field strength. Finally, we discuss the role of density in dense suspensions of phototactic micro-swimmers.


Assuntos
Cianobactérias , Modelos Teóricos , Movimento (Física) , Microfluídica , Reologia , Suspensões
10.
PLoS One ; 7(1): e29759, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22272246

RESUMO

Interactions between individuals that are guided by simple rules can generate swarming behavior. Swarming behavior has been observed in many groups of organisms, including humans, and recent research has revealed that plants also demonstrate social behavior based on mutual interaction with other individuals. However, this behavior has not previously been analyzed in the context of swarming. Here, we show that roots can be influenced by their neighbors to induce a tendency to align the directions of their growth. In the apparently noisy patterns formed by growing roots, episodic alignments are observed as the roots grow close to each other. These events are incompatible with the statistics of purely random growth. We present experimental results and a theoretical model that describes the growth of maize roots in terms of swarming.


Assuntos
Meristema/crescimento & desenvolvimento , Modelos Biológicos , Raízes de Plantas/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Algoritmos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa