Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 13(3): e1006658, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28273136

RESUMO

Facioscapulohumeral dystrophy (FSHD) is caused by the mis-expression of DUX4 in skeletal muscle cells. DUX4 is a transcription factor that activates genes normally associated with stem cell biology and its mis-expression in FSHD cells results in apoptosis. To identify genes and pathways necessary for DUX4-mediated apoptosis, we performed an siRNA screen in an RD rhabdomyosarcoma cell line with an inducible DUX4 transgene. Our screen identified components of the MYC-mediated apoptotic pathway and the double-stranded RNA (dsRNA) innate immune response pathway as mediators of DUX4-induced apoptosis. Further investigation revealed that DUX4 expression led to increased MYC mRNA, accumulation of nuclear dsRNA foci, and activation of the dsRNA response pathway in both RD cells and human myoblasts. Nuclear dsRNA foci were associated with aggregation of the exon junction complex component EIF4A3. The elevation of MYC mRNA, dsRNA accumulation, and EIF4A3 nuclear aggregates in FSHD muscle cells suggest that these processes might contribute to FSHD pathophysiology.


Assuntos
Apoptose , Proteínas de Homeodomínio/genética , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Proteínas Proto-Oncogênicas c-myc/genética , RNA de Cadeia Dupla/genética , Rabdomiossarcoma/genética , Caspases/metabolismo , Morte Celular , Linhagem Celular , Sobrevivência Celular , RNA Helicases DEAD-box/genética , Fator de Iniciação 4A em Eucariotos/genética , Éxons , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Mutação , Mioblastos/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/genética
2.
Genes Dev ; 25(10): 997-1003, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21576260

RESUMO

Chromatin-modifying enzymes are known to be critical components for the correct differentiation of embryonic stem cells into specific lineages, such as neurons. Recently, the role of Polycomb group proteins has been studied in the specification and differentiation of muscle stem cells. In this perspective, we review a recent study by Juan and colleagues (pp. 789-794) in Genes & Development of the role of the polycomb group protein Ezh2 in muscle stem cells, and discuss the implications for general lineage restriction.


Assuntos
Diferenciação Celular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteínas Repressoras/metabolismo , Animais , Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Desenvolvimento Muscular , Proteínas do Grupo Polycomb , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
3.
Genome Res ; 20(10): 1383-90, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20709945

RESUMO

The histone variant H2A.Z has been implicated in the regulation of gene expression, and in plants antagonizes DNA methylation. Here, we ask whether a similar relationship exists in mammals, using a mouse B-cell lymphoma model, where chromatin states can be monitored during tumorigenesis. Using native chromatin immunoprecipitation with microarray hybridization (ChIP-chip), we found a progressive depletion of H2A.Z around transcriptional start sites (TSSs) during MYC-induced transformation of pre-B cells and, subsequently, during lymphomagenesis. In addition, we found that H2A.Z and DNA methylation are generally anticorrelated around TSSs in both wild-type and MYC-transformed cells, as expected for the opposite effects of these chromatin features on promoter competence. Depletion of H2A.Z over TSSs both in cells that are induced to proliferate and in cells that are developing into a tumor suggests that progressive loss of H2A.Z during tumorigenesis results from the advancing disease state. These changes were accompanied by increases in chromatin salt solubility. Surprisingly, ∼30% of all genes showed a redistribution of H2A.Z from around TSSs to bodies of active genes during the transition from MYC-transformed to tumor cells, with DNA methylation lost from gene bodies where H2A.Z levels increased. No such redistributions were observed during MYC-induced transformation of wild-type pre-B cells. The documented role of H2A.Z in regulating transcription suggests that 30% of genes have the potential to be aberrantly expressed during tumorigenesis. Our results imply that antagonism between H2A.Z deposition and DNA methylation is a conserved feature of eukaryotic genes, and that transcription-coupled H2A.Z changes may play a role in cancer initiation and progression.


Assuntos
Linfócitos B/metabolismo , Transformação Celular Neoplásica , Metilação de DNA , Histonas/metabolismo , Linfoma de Células B/patologia , Animais , Animais Geneticamente Modificados , Linfócitos B/patologia , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hibridização de Ácido Nucleico , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/patologia
4.
Dev Cell ; 36(4): 375-85, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26906734

RESUMO

Most transcription factor families contain highly related paralogs generated by gene duplication, and functional divergence is generally accomplished by activation of distinct sets of genes by each member. Here we compare the molecular functions of Myf5 and MyoD, two highly related bHLH transcription factors that regulate skeletal muscle specification and differentiation. We find that MyoD and Myf5 bind the same sites genome-wide but have distinct functions: Myf5 induces histone acetylation without Pol II recruitment or robust gene activation, whereas MyoD induces histone acetylation, recruits Pol II, and robustly activates gene transcription. Therefore, the initial specification of the muscle lineage by Myf5 occurs without significant induction of gene transcription. Transcription of the skeletal muscle program is then achieved by the subsequent expression of MyoD, which binds to the same sites as Myf5, indicating that each factor regulates distinct steps in gene initiation and transcription at a shared set of binding sites.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Fator Regulador Miogênico 5/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Proteínas Musculares/metabolismo , Ativação Transcricional/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa