Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 582(7812): 443-447, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499642

RESUMO

TWIK-related acid-sensitive potassium (TASK) channels-members of the two pore domain potassium (K2P) channel family-are found in neurons1, cardiomyocytes2-4 and vascular smooth muscle cells5, where they are involved in the regulation of heart rate6, pulmonary artery tone5,7, sleep/wake cycles8 and responses to volatile anaesthetics8-11. K2P channels regulate the resting membrane potential, providing background K+ currents controlled by numerous physiological stimuli12-15. Unlike other K2P channels, TASK channels are able to bind inhibitors with high affinity, exceptional selectivity and very slow compound washout rates. As such, these channels are attractive drug targets, and TASK-1 inhibitors are currently in clinical trials for obstructive sleep apnoea and atrial fibrillation16. In general, potassium channels have an intramembrane vestibule with a selectivity filter situated above and a gate with four parallel helices located below; however, the K2P channels studied so far all lack a lower gate. Here we present the X-ray crystal structure of TASK-1, and show that it contains a lower gate-which we designate as an 'X-gate'-created by interaction of the two crossed C-terminal M4 transmembrane helices at the vestibule entrance. This structure is formed by six residues (243VLRFMT248) that are essential for responses to volatile anaesthetics10, neurotransmitters13 and G-protein-coupled receptors13. Mutations within the X-gate and the surrounding regions markedly affect both the channel-open probability and the activation of the channel by anaesthetics. Structures of TASK-1 bound to two high-affinity inhibitors show that both compounds bind below the selectivity filter and are trapped in the vestibule by the X-gate, which explains their exceptionally low washout rates. The presence of the X-gate in TASK channels explains many aspects of their physiological and pharmacological behaviour, which will be beneficial for the future development and optimization of TASK modulators for the treatment of heart, lung and sleep disorders.


Assuntos
Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/química , Anestésicos/farmacologia , Animais , Cristalografia por Raios X , Condutividade Elétrica , Feminino , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Modelos Moleculares , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Xenopus laevis
2.
Mol Pharmacol ; 98(2): 143-155, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32616523

RESUMO

The two-pore domain potassium channel (K2P-channel) THIK-1 has several predicted protein kinase A (PKA) phosphorylation sites. In trying to elucidate whether THIK-1 is regulated via PKA, we expressed THIK-1 channels in a mammalian cell line (CHO cells) and used the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine (IBMX) as a pharmacological tool to induce activation of PKA. Using the whole-cell patch-clamp recording, we found that THIK-1 currents were inhibited by application of IBMX with an IC50 of 120 µM. Surprisingly, intracellular application of IBMX or of the second messenger cAMP via the patch pipette had no effect on THIK-1 currents. In contrast, extracellular application of IBMX produced a rapid and reversible inhibition of THIK-1. In patch-clamp experiments with outside-out patches, THIK-1 currents were also inhibited by extracellular application of IBMX. Expression of THIK-1 channels in Xenopus oocytes was used to compare wild-type channels with mutated channels. Mutation of the putative PKA phosphorylation sites did not change the inhibitory effect of IBMX on THIK-1 currents. Mutational analysis of all residues of the (extracellular) helical cap of THIK-1 showed that mutation of the arginine residue at position 92, which is in the linker between cap helix 2 and pore helix 1, markedly reduced the inhibitory effect of IBMX. This flexible linker region, which is unique for each K2P-channel subtype, may be a possible target of channel-specific blockers. SIGNIFICANCE STATEMENT: The potassium channel THIK-1 is strongly expressed in the central nervous system. We studied the effect of 3-isobutyl-1-methyl-xanthine (IBMX) on THIK-1 currents. IBMX inhibits breakdown of cAMP and thus activates protein kinase A (PKA). Surprisingly, THIK-1 current was inhibited when IBMX was applied from the extracellular side of the membrane, but not from the intracellular side. Our results suggest that IBMX binds directly to the channel and that the inhibition of THIK-1 current was not related to activation of PKA.


Assuntos
1-Metil-3-Isobutilxantina/farmacologia , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Arginina/genética , Sítios de Ligação/efeitos dos fármacos , Células CHO , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Mutação , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Ratos , Xenopus
3.
PLoS One ; 16(10): e0258275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34618865

RESUMO

In addition to the classical voltage-dependent behavior mediated by the voltage-sensing-domains (VSD) of ion channels, a growing number of voltage-dependent gating behaviors are being described in channels that lack canonical VSDs. A common thread in their mechanism of action is the contribution of the permeating ion to this voltage sensing process. The polymodal K2P K+ channel, TREK2 responds to membrane voltage through a gating process mediated by the interaction of K+ with its selectivity filter. Recently, we found that this action can be modulated by small molecule agonists (e.g. BL1249) which appear to have an electrostatic influence on K+ binding within the inner cavity and produce an increase in the single-channel conductance of TREK-2 channels. Here, we directly probed this K+-dependent gating process by recording both macroscopic and single-channel currents of TREK-2 in the presence of high concentrations of internal K+. Surprisingly we found TREK-2 is inhibited by high internal K+ concentrations and that this is mediated by the concomitant increase in ionic-strength. However, we were still able to determine that the increase in single channel conductance in the presence of BL1249 was blunted in high ionic-strength, whilst its activatory effect (on channel open probability) persisted. These effects are consistent with an electrostatic mechanism of action of negatively charged activators such as BL1249 on permeation, but also suggest that their influence on channel gating is complex.


Assuntos
Permeabilidade da Membrana Celular , Ativação do Canal Iônico , Concentração Osmolar , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ânions , Células HEK293 , Humanos , Pressão Osmótica , Conformação Proteica
4.
J Gen Physiol ; 153(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34032848

RESUMO

The TREK subfamily of two-pore domain K+ (K2P) channels are inhibited by fluoxetine and its metabolite, norfluoxetine (NFx). Although not the principal targets of this antidepressant, TREK channel inhibition by NFx has provided important insights into the conformational changes associated with channel gating and highlighted the role of the selectivity filter in this process. However, despite the availability of TREK-2 crystal structures with NFx bound, the precise mechanisms underlying NFx inhibition remain elusive. NFx has previously been proposed to be a state-dependent inhibitor, but its binding site suggests many possible ways in which this positively charged drug might inhibit channel activity. Here we show that NFx exerts multiple effects on single-channel behavior that influence both the open and closed states of the channel and that the channel can become highly activated by 2-APB while remaining in the down conformation. We also show that the inhibitory effects of NFx are unrelated to its positive charge but can be influenced by agonists which alter filter stability, such as ML335, as well as by an intrinsic voltage-dependent gating process within the filter. NFx therefore not only inhibits channel activity by altering the equilibrium between up and down conformations but also can directly influence filter gating. These results provide further insight into the complex allosteric mechanisms that modulate filter gating in TREK K2P channels and highlight the different ways in which filter gating can be regulated to permit polymodal regulation.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Sítios de Ligação , Fluoxetina/análogos & derivados , Fluoxetina/farmacologia , Ativação do Canal Iônico , Canais de Potássio de Domínios Poros em Tandem/metabolismo
5.
Science ; 363(6429): 875-880, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30792303

RESUMO

Potassium (K+) channels have been evolutionarily tuned for activation by diverse biological stimuli, and pharmacological activation is thought to target these specific gating mechanisms. Here we report a class of negatively charged activators (NCAs) that bypass the specific mechanisms but act as master keys to open K+ channels gated at their selectivity filter (SF), including many two-pore domain K+ (K2P) channels, voltage-gated hERG (human ether-à-go-go-related gene) channels and calcium (Ca2+)-activated big-conductance potassium (BK)-type channels. Functional analysis, x-ray crystallography, and molecular dynamics simulations revealed that the NCAs bind to similar sites below the SF, increase pore and SF K+ occupancy, and open the filter gate. These results uncover an unrecognized polypharmacology among K+ channel activators and highlight a filter gating machinery that is conserved across different families of K+ channels with implications for rational drug design.


Assuntos
Clorobenzenos/farmacologia , Canal de Potássio ERG1/agonistas , Canal de Potássio ERG1/química , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/agonistas , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Tetra-Hidronaftalenos/farmacologia , Tetrazóis/farmacologia , Tioureia/análogos & derivados , ortoaminobenzoatos/farmacologia , Animais , Células CHO , Clorobenzenos/química , Cricetulus , Cristalografia por Raios X , Desenho de Fármacos , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Domínios Proteicos , Tetra-Hidronaftalenos/química , Tetrazóis/química , Tioureia/química , Tioureia/farmacologia , Xenopus , ortoaminobenzoatos/química
6.
Pain ; 159(3): 469-480, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29176367

RESUMO

Diabetic peripheral neuropathy (DPN) is a common disabling complication of diabetes. Almost half of the patients with DPN develop neuropathic pain (NeuP) for which current analgesic treatments are inadequate. Understanding the role of genetic variability in the development of painful DPN is needed for improved understanding of pain pathogenesis for better patient stratification in clinical trials and to target therapy more appropriately. Here, we examined the relationship between variants in the voltage-gated sodium channel NaV1.7 and NeuP in a deeply phenotyped cohort of patients with DPN. Although no rare variants were found in 78 participants with painless DPN, we identified 12 rare NaV1.7 variants in 10 (out of 111) study participants with painful DPN. Five of these variants had previously been described in the context of other NeuP disorders and 7 have not previously been linked to NeuP. Those patients with rare variants reported more severe pain and greater sensitivity to pressure stimuli on quantitative sensory testing. Electrophysiological characterization of 2 of the novel variants (M1852T and T1596I) demonstrated that gain of function changes as a consequence of markedly impaired channel fast inactivation. Using a structural model of NaV1.7, we were also able to provide further insight into the structural mechanisms underlying fast inactivation and the role of the C-terminal domain in this process. Our observations suggest that rare NaV1.7 variants contribute to the development NeuP in patients with DPN. Their identification should aid understanding of sensory phenotype, patient stratification, and help target treatments effectively.


Assuntos
Neuropatias Diabéticas/genética , Variação Genética/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Adulto , Idoso , Estudos de Coortes , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Masculino , Potenciais da Membrana/genética , Pessoa de Meia-Idade , Modelos Moleculares , Mutagênese Sítio-Dirigida , Medição da Dor , Técnicas de Patch-Clamp , Índice de Gravidade de Doença , Transfecção
7.
Structure ; 25(5): 708-718.e2, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28392258

RESUMO

The mechanosensitive two-pore domain (K2P) K+ channels (TREK-1, TREK-2, and TRAAK) are important for mechanical and thermal nociception. However, the mechanisms underlying their gating by membrane stretch remain controversial. Here we use molecular dynamics simulations to examine their behavior in a lipid bilayer. We show that TREK-2 moves from the "down" to "up" conformation in direct response to membrane stretch, and examine the role of the transmembrane pressure profile in this process. Furthermore, we show how state-dependent interactions with lipids affect the movement of TREK-2, and how stretch influences both the inner pore and selectivity filter. Finally, we present functional studies that demonstrate why direct pore block by lipid tails does not represent the principal mechanism of mechanogating. Overall, this study provides a dynamic structural insight into K2P channel mechanosensitivity and illustrates how the structure of a eukaryotic mechanosensitive ion channel responds to changes in forces within the bilayer.


Assuntos
Ativação do Canal Iônico , Canais de Potássio de Domínios Poros em Tandem/química , Humanos , Bicamadas Lipídicas/química , Mecanotransdução Celular , Canais de Potássio de Domínios Poros em Tandem/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa