Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Magn Reson Med ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852175

RESUMO

PURPOSE: Wideband phase-sensitive inversion recovery (PSIR) late gadolinium enhancement (LGE) enables myocardial scar imaging in implantable cardioverter defibrillators (ICD) patients, mitigating hyperintensity artifacts. To address subendocardial scar visibility challenges, a 2D breath-hold single-shot electrocardiography-triggered black-blood (BB) LGE sequence was integrated with wideband imaging, enhancing scar-blood contrast. METHODS: Wideband BB, with increased bandwidth in the inversion pulse (0.8-3.8 kHz) and T2 preparation refocusing pulses (1.6-5.0 kHz), was compared with conventional and wideband PSIR, and conventional BB, in a phantom and sheep with and without ICD, and in six patients with cardiac devices and known myocardial injury. ICD artifact extent was quantified in the phantom and specific absorption rate (SAR) was reported for each sequence. Image contrast ratios were analyzed in both phantom and animal experiments. Expert radiologists assessed image quality, artifact severity, and scar segments in patients and sheep. Additionally, histology was performed on the sheep's heart. RESULTS: In the phantom, wideband BB reduced ICD artifacts by 62% compared to conventional BB while substantially improving scar-blood contrast, but with a SAR more than 24 times that of wideband PSIR. Similarly, the animal study demonstrated a considerable increase in scar-blood contrast with wideband BB, with superior scar detection compared with wideband PSIR, the latter confirmed by histology. In alignment with the animal study, wideband BB successfully eliminated severe ICD hyperintensity artifacts in all patients, surpassing wideband PSIR in image quality and scar detection. CONCLUSION: Wideband BB may play a crucial role in imaging ICD patients, offering images with reduced ICD artifacts and enhanced scar detection.

2.
J Cardiovasc Magn Reson ; 25(1): 78, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38093273

RESUMO

BACKGROUND: While the microstructure of the left ventricle (LV) has been largely described, only a few studies investigated the right ventricular insertion point (RVIP). It was accepted that the aggregate cardiomyocytes organization was much more complex due to the intersection of the ventricular cavities but a precise structural characterization in the human heart was lacking even if clinical phenotypes related to right ventricular wall stress or arrhythmia were observed in this region. METHODS: MRI-derived anatomical imaging (150 µm3) and diffusion tensor imaging (600 µm3) were performed in large mammalian whole hearts (human: N = 5, sheep: N = 5). Fractional anisotropy, aggregate cardiomyocytes orientations and tractography were compared within both species. Aggregate cardiomyocytes orientation on one ex-vivo sheep whole heart was then computed using structure tensor imaging (STI) from 21 µm isotropic acquisition acquired with micro computed tomography (MicroCT) imaging. Macroscopic and histological examination were performed. Lastly, experimental cardiomyocytes orientation distribution was then compared to the usual rule-based model using electrophysiological (EP) modeling. Electrical activity was modeled with the monodomain formulation. RESULTS: The RVIP at the level of the inferior ventricular septum presented a unique arrangement of aggregate cardiomyocytes. An abrupt, mid-myocardial change in cardiomyocytes orientation was observed, delimiting a triangle-shaped region, present in both sheep and human hearts. FA's histogram distribution (mean ± std: 0.29 ± 0.06) of the identified region as well as the main dimension (22.2 mm ± 5.6 mm) was found homogeneous across samples and species. Averaged volume is 0.34 cm3 ± 0.15 cm3. Both local activation time (LAT) and morphology of pseudo-ECGs were strongly impacted with delayed LAT and change in peak-to-peak amplitude in the simulated wedge model. CONCLUSION: The study was the first to describe the 3D cardiomyocytes architecture of the basal inferoseptal left ventricle region in human hearts and identify the presence of a well-organized aggregate cardiomyocytes arrangement and cardiac structural discontinuities. The results might offer a better appreciation of clinical phenotypes like RVIP-late gadolinium enhancement or uncommon idiopathic ventricular arrhythmias (VA) originating from this region.


Assuntos
Imagem de Tensor de Difusão , Ventrículos do Coração , Humanos , Animais , Ovinos , Ventrículos do Coração/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Meios de Contraste , Microtomografia por Raio-X , Valor Preditivo dos Testes , Gadolínio , Miócitos Cardíacos/fisiologia , Arritmias Cardíacas , Mamíferos
3.
Europace ; 25(11)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37851513

RESUMO

AIMS: The optimal interlesion distance (ILD) for 90 and 50 W radiofrequency applications with low ablation index (AI) values in the atria has not been established. Excessive ILDs can predispose to interlesion gaps, whereas restrictive ILDs can predispose to procedural complications. The present study sought, therefore, to experimentally determine the optimal ILD for 90 W-4 s and 50 W applications with low AI values to optimize catheter ablation outcomes in humans. METHODS AND RESULTS: Posterior intercaval lines were created in eight adult sheep using CARTO and the QDOT-MICRO catheter in a temperature-controlled mode. In four animals, the lines were created with 50 W applications, a target AI value ≥350, and ILDs of 6, 5, 4, and 3 mm, respectively. In the other four animals, the lines were created with 90 W-4 s applications and ILDs of 6, 5, 4, and 3 mm, respectively. Activation maps were created immediately after ablation and at 21 days to assess linear block prior to gross and histological analyses. All eight lines appeared transmural and continuous on histology. However, for 50 W-only applications with an ILD of 3 mm resulted in durable linear electrical block, whereas for 90 W applications, only the lines with ILDs of 4 and 3 mm were blocked. No complications were detected during ablation procedures, but all power and ILD combinations except 50 W-6 mm resulted in asymptomatic shallow lung lesions. CONCLUSION: In the intercaval region in sheep, for 50 W applications with an AI value of ∼370, the optimal ILD is 3 mm, whereas for 90 W-4 s applications, the optimal ILD is 3-4 mm.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Doenças Pulmonares Intersticiais , Veias Pulmonares , Humanos , Adulto , Animais , Ovinos , Veias Pulmonares/cirurgia , Átrios do Coração/cirurgia , Átrios do Coração/patologia , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Catéteres , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/cirurgia , Fibrilação Atrial/cirurgia , Fibrilação Atrial/patologia , Resultado do Tratamento
4.
Am J Physiol Heart Circ Physiol ; 322(6): H936-H952, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35302879

RESUMO

Cardiac fiber direction is an important factor determining the propagation of electrical activity, as well as the development of mechanical force. In this article, we imaged the ventricles of several species with special attention to the intraventricular septum to determine the functional consequences of septal fiber organization. First, we identified a dual-layer organization of the fiber orientation in the intraventricular septum of ex vivo sheep hearts using diffusion tensor imaging at high field MRI. To expand the scope of the results, we investigated the presence of a similar fiber organization in five mammalian species (rat, canine, pig, sheep, and human) and highlighted the continuity of the layer with the moderator band in large mammalian species. We implemented the measured septal fiber fields in three-dimensional electromechanical computer models to assess the impact of the fiber orientation. The downward fibers produced a diamond activation pattern superficially in the right ventricle. Electromechanically, there was very little change in pressure volume loops although the stress distribution was altered. In conclusion, we clarified that the right ventricular septum has a downwardly directed superficial layer in larger mammalian species, which can have modest effects on stress distribution.NEW & NOTEWORTHY A dual-layer organization of the fiber orientation in the intraventricular septum was identified in ex vivo hearts of large mammals. The RV septum has a downwardly directed superficial layer that is continuous with the moderator band. Electrically, it produced a diamond activation pattern. Electromechanically, little change in pressure volume loops were noticed but stress distribution was altered. Fiber distribution derived from diffusion tensor imaging should be considered for an accurate strain and stress analysis.


Assuntos
Imagem de Tensor de Difusão , Septo Interventricular , Animais , Diamante , Cães , Ventrículos do Coração , Mamíferos , Miocárdio , Ratos , Ovinos , Suínos , Septo Interventricular/diagnóstico por imagem
5.
J Cardiovasc Electrophysiol ; 32(3): 570-577, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476463

RESUMO

BACKGROUND: Ultralow temperature cyroablation (ULTC) is designed to create focal, linear, and circumferential lesions. The aim of this study was to assess the safety, efficacy, and durability of atrial and ventricular ULTC lesions in preclinical large animal models. METHODS AND RESULTS: The ULTC system uses nitrogen near its liquid-vapor critical point to cool 11-cm ablation catheters. The catheter can be shaped to specific anatomies using pre-shaped stylets. ULTC was used in 11 swine and four sheep to create atrial (pulmonary vein isolation and linear ablation) and ventricular lesions. Acute and 90-day success were evaluated by intracardiac mapping and histologic examination. Cryoadherence was observed during all ULTC applications, ensuring catheter stability at target locations. Local electrograms were completely eliminated immediately after the first single-shot ULTC application in 49 of 53 (92.5%) atrial and in 31 of 32 (96.9%) ventricular applications. Lesion depth as measured on histology preparations was 1.96 ± 0.8 mm in atrial and 5.61 ± 2.2 mm in ventricular lesions. In all animals, voltage maps and histology demonstrated transmural and durable lesions without gaps, surrounded by intact collagen fibers without injury to surrounding tissues. Transient coronary spasm could be provoked with endocardial ULTC in the left ventricle in close proximity to a coronary artery. CONCLUSIONS: ULTC created effective and efficient atrial and ventricular lesions in vivo without procedural complications in two large animal models. ULTC lesions were transmural, contiguous, and durable over 3 months.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Criocirurgia , Veias Pulmonares , Animais , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Criocirurgia/efeitos adversos , Átrios do Coração/cirurgia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/cirurgia , Veias Pulmonares/cirurgia , Ovinos , Suínos , Temperatura
6.
MAGMA ; 34(4): 605-618, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33484367

RESUMO

OBJECTIVES: We investigate the possibility to exploit high-field MRI to acquire 3D images of Purkinje network which plays a crucial role in cardiac function. Since Purkinje fibers (PF) have a distinct cellular structure and are surrounded by connective tissue, we investigated conventional contrast mechanisms along with the magnetization transfer (MT) imaging technique to improve image contrast between ventricular structures of differing macromolecular content. METHODS: Three fixed porcine ventricular samples were used with free-running PFs on the endocardium. T1, T2*, T2, and M0 were evaluated on 2D slices for each sample at 9.4 T. MT parameters were optimized using hard pulses with different amplitudes, offset frequencies and durations. The cardiac structure was assessed through 2D and 3D T1w images with isotropic resolutions of 150 µm. Histology, immunofluorescence, and qPCR were performed to analyze collagen contents of cardiac tissue and PF. RESULTS: An MT preparation module of 350 ms duration inserted into the sequence with a B1 = 10 µT and frequency offset = 3000 Hz showed the best contrast, approximately 0.4 between PFs and myocardium. Magnetization transfer ratio (MTR) appeared higher in the cardiac tissue (MTR = 44.7 ± 3.5%) than in the PFs (MTR = 25.2 ± 6.3%). DISCUSSION: MT significantly improves contrast between PFs and ventricular myocardium and appears promising for imaging the 3D architecture of the Purkinje network.


Assuntos
Imageamento por Ressonância Magnética , Ramos Subendocárdicos , Animais , Imageamento Tridimensional , Ramos Subendocárdicos/diagnóstico por imagem , Suínos
7.
J Mol Cell Cardiol ; 128: 117-128, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30677394

RESUMO

Cardiac conduction disturbances are linked with arrhythmia development. The concept of safety factor (SF) has been derived to describe the robustness of conduction, but the usefulness of this metric has been constrained by several limitations. For example, due to the difficulty of measuring the necessary input variables, SF calculations have only been applied to synthetic data. Moreover, quantitative validation of SF is lacking; specifically, the practical meaning of particular SF values is unclear, aside from the fact that propagation failure (i.e., conduction block) is characterized by SF < 1. This study aims to resolve these limitations for our previously published SF formulation and explore its relationship to relevant electrophysiological properties of cardiac tissue. First, HL-1 cardiomyocyte monolayers were grown on multi-electrode arrays and the robustness of propagation was estimated using extracellular potential recordings. SF values reconstructed purely from experimental data were largely between 1 and 5 (up to 89.1% of sites characterized). This range is consistent with values derived from synthetic data, proving that the formulation is sound and its applicability is not limited to analysis of computational models. Second, for simulations conducted in 1-, 2-, and 3-dimensional tissue blocks, we calculated true SF values at locations surrounding the site of current injection for sub- and supra-threshold stimuli and found that they differed from values estimated by our SF formulation by <10%. Finally, we examined SF dynamics under conditions relevant to arrhythmia development in order to provide physiological insight. Our analysis shows that reduced conduction velocity (Θ) caused by impaired intrinsic cell-scale excitability (e.g., due to sodium current a loss-of-function mutation) is associated with less robust conduction (i.e., lower SF); however, intriguingly, Θ variability resulting from modulation of tissue scale conductivity has no effect on SF. These findings are supported by analytic derivation of the relevant relationships from first principles. We conclude that our SF formulation, which can be applied to both experimental and synthetic data, produces values that vary linearly with the excess charge needed for propagation. SF calculations can provide insights helpful in understanding the initiation and perpetuation of cardiac arrhythmia.


Assuntos
Arritmias Cardíacas/fisiopatologia , Fenômenos Eletrofisiológicos , Modelos Cardiovasculares , Contração Miocárdica/fisiologia , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/epidemiologia , Bloqueio Cardíaco/fisiopatologia , Frequência Cardíaca/fisiologia , Humanos , Contração Miocárdica/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Condutividade Térmica
8.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1248-1261, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37227351

RESUMO

BACKGROUND: Brugada syndrome is a significant cause of sudden cardiac death (SCD), but the underlying mechanisms remain hypothetical. OBJECTIVES: This study aimed to elucidate this knowledge gap through detailed ex vivo human heart studies. METHODS: A heart was obtained from a 15-year-old adolescent boy with normal electrocardiogram who experienced SCD. Postmortem genotyping was performed, and clinical examinations were done on first-degree relatives. The right ventricle was optically mapped, followed by high-field magnetic resonance imaging and histology. Connexin-43 and NaV1.5 were localized by immunofluorescence, and RNA and protein expression levels were studied. HEK-293 cell surface biotinylation assays were performed to examine NaV1.5 trafficking. RESULTS: A Brugada-related SCD diagnosis was established for the donor because of a SCN5A Brugada-related variant (p.D356N) inherited from his mother, together with a concomitant NKX2.5 variant of unknown significance. Optical mapping demonstrated a localized epicardial region of impaired conduction near the outflow tract, in the absence of repolarization alterations and microstructural defects, leading to conduction blocks and figure-of-8 patterns. NaV1.5 and connexin-43 localizations were normal in this region, consistent with the finding that the p.D356N variant does not affect the trafficking, nor the expression of NaV1.5. Trends of decreased NaV1.5, connexin-43, and desmoglein-2 protein levels were noted; however, the RT-qPCR results suggested that the NKX2-5 variant was unlikely to be involved. CONCLUSIONS: This study demonstrates for the first time that SCD associated with a Brugada-SCN5A variant can be caused by localized functionally, not structurally, impaired conduction.


Assuntos
Síndrome de Brugada , Masculino , Adolescente , Humanos , Células HEK293 , Eletrocardiografia , Doença do Sistema de Condução Cardíaco , Morte Súbita Cardíaca , Conexinas
9.
Circ Arrhythm Electrophysiol ; 15(4): e010663, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35363039

RESUMO

BACKGROUND: Fifty-watt radiofrequency applications have proven to be safe and efficient for pulmonary vein isolation (PVI). However, as PV reconnection still occurs and ablation catheter instability significantly contributes to suboptimal lesion formation, a new ablation catheter capable of delivering 90 W for 4 seconds only has been developed with the aim of improving PVI outcomes. In this setting, we sought to determine whether 90 W applications create transmural lesions without collateral damage experimentally and whether they can safely improve PVI procedures clinically compared with 50 W settings. METHODS: Experimentally, individual lesions were created in vivo in the right atrium of 6 swine with 90 W-4 seconds applications using the SmartTouch-SF catheter in a power-controlled mode (3 animals) or the QDOT-MICRO catheter in a temperature-controlled mode (3 animals). Clinically, PVI was performed in a homogenous population of 150 consecutive paroxysmal atrial fibrillation patients using CARTO and the QDOT-MICRO catheter in a temperature-controlled mode (75 patients 50 W-ablation index-guided and 75 patients 90 W-4 seconds). RESULTS: Mostly, (94.9%) experimental lesions were transmural in the thin-walled right atrium of swine. However, collateral damage was observed with both catheters in 17.9% of lesions. Clinically, 90 W procedures had a lower first-pass PVI rate (49% versus 81%, P<10-4) and a higher acute PV reconnection rate (21% versus 5%, P=0.004) than 50 W procedures, whereas total procedural duration (62 versus 66 minutes, P=0.09), 1-year sinus rhythm maintenance (88% versus 90%, P=0.6) and safety (1 tamponade per group) were similar in both groups. CONCLUSIONS: Experimentally, using the QDOT-MICRO catheter, 90 W-4 seconds lesions are mostly transmural in the thin-walled right atrium of swine (median depth 1.87 mm) with a moderate lesion diameter of 6.62 mm but retain the potential for collateral damage. Clinically, 90 W-4 seconds applications are associated with a lower first-pass PVI rate and a higher acute PV reconnection rate than 50 W applications but similar safety outcomes and effectiveness at 1 year.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Animais , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Catéteres , Átrios do Coração/cirurgia , Humanos , Veias Pulmonares/cirurgia , Recidiva , Suínos , Resultado do Tratamento
10.
J Vis Exp ; (180)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35225260

RESUMO

Structural remodeling is a common consequence of chronic pathological stresses imposed on the heart. Understanding the architectural and compositional properties of diseased tissue is critical to determine their interactions with arrhythmic behavior. Microscale tissue remodeling, below the clinical resolution, is emerging as an important source of lethal arrhythmia, with high prevalence in young adults. Challenges remain in obtaining high imaging contrast at sufficient microscale resolution for preclinical models, such as large mammalian whole hearts. Moreover, tissue composition-selective contrast enhancement for three-dimensional high-resolution imaging is still lacking. Non-destructive imaging using micro-computed tomography shows promise for high-resolution imaging. The objective was to alleviate sufferance from X-ray over attenuation in large biological samples. Hearts were extracted from healthy pigs (N = 2), and sheep (N = 2) with either induced chronic myocardial infarction and fibrotic scar formation or induced chronic atrial fibrillation. Excised hearts were perfused with: a saline solution supplemented with a calcium ion quenching agent and a vasodilator, ethanol in serial dehydration, and hexamethyldisilizane under vacuum. The latter reinforced the heart structure during air-drying for 1 week. Collagen-dominant tissue was selectively bound by an X-ray contrast-enhancing agent, phosphomolybdic acid. Tissue conformation was stable in air, permitting long-duration microcomputed tomography acquisitions to obtain high-resolution (isotropic 20.7 µm) images. Optimal contrast agent loading by diffusion showed selective contrast enhancement of the epithelial layer and sub-endocardial Purkinje fibers in healthy pig ventricles. Atrial fibrillation (AF) hearts showed enhanced contrast accumulation in the posterior walls and appendages of the atria, attributed to greater collagen content. Myocardial infarction hearts showed increased contrast selectively in regions of cardiac fibrosis, which enabled the identification of interweaving surviving myocardial muscle fibers. Contrast-enhanced air-dried tissue preparations enabled microscale imaging of the intact large mammalian heart and selective contrast enhancement of underlying disease constituents.


Assuntos
Fibrilação Atrial , Átrios do Coração , Animais , Doença Crônica , Mamíferos , Miocárdio/patologia , Ovinos , Suínos , Microtomografia por Raio-X
11.
Front Physiol ; 12: 748203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899379

RESUMO

Background: Sole pulmonary vein (PV) isolation by ablation therapy prevents atrial fibrillation (AF) in patients with short episodes of AF and without comorbidities. Since incomplete PV isolation can be curative, we tested the hypothesis that the PV in the absence of remodeling and comorbidities contains structural and functional properties that are proarrhythmic for AF initiation by reentry. Methods: We performed percutaneous transvenous in vivo endocardial electrophysiological studies and quantitative histological analysis of PV from healthy sheep. Results: The proximal PV contained more myocytes than the distal PV and a higher percentage of collagen and fat tissue relative to myocytes than the left atrium. Local fractionated electrograms occurred in both the distal and proximal PVs, but a large local activation (>0.75 mV) was more often present in the proximal PV than in the distal PV (86 vs. 50% of electrograms, respectively, p = 0.017). Atrial arrhythmias (run of premature atrial complexes) occurred more often following the premature stimulation in the proximal PV than in the distal PV (p = 0.004). The diastolic stimulation threshold was higher in the proximal PV than in the distal PV (0.7 [0.3] vs. 0.4 [0.2] mA, (median [interquartile range]), p = 0.004). The refractory period was shorter in the proximal PV than in the distal PV (170 [50] vs. 248 [52] ms, p < 0.001). A linear relation existed between the gradient in refractoriness (distal-proximal) and atrial arrhythmia inducibility in the proximal PV. Conclusion: The structural and functional properties of the native atrial-PV junction differ from those of the distal PV. Atrial arrhythmias in the absence of arrhythmia-induced remodeling are caused by reentry in the atrial-PV junction. Ablative treatment of early paroxysmal AF, rather than complete isolation of focal arrhythmia, may be limited to inhibition of reentry.

12.
Int J Cardiol Heart Vasc ; 37: 100894, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34746362

RESUMO

BACKGROUND: Ablative pulmonary vein isolation (PVI) decreases pulmonary vein (PV) and left atrial (LA) dimensions in atrial fibrillation (AF) patients. These changes are attributed to reverse structural remodeling following sinus rhythm restoration but evidence is lacking. We hypothesized that the downsizing is directly caused by the ablative energy and subsequent scar formation. METHODS: We studied cardiac magnetic resonance imaging in 21 paroxysmal AF patients before and 3 months after successful PVI and in healthy sheep (n = 12) before and after PVI of the right PV only. RESULTS: PVI decreased the PV diameter in patients and sheep by 11.0(10.3) and 9.2(11.0)%, (p < 0.001 and p = 0.020), respectively. The control left PV in sheep were unchanged. A linear correlation existed between the extent of PV scar and PVI-induced decrease in PV diameter in patients.After PVI, the LA volume decreased (103(38) vs. 92(31)ml, pre- vs. post-ablation, respectively, p = 0.006), while the right atrial (RA) volume was unchanged in patients. A decrease in active emptying fraction after ablation (26.5(10.7) vs. 21.8(10.6)%, pre- vs. post-ablation, p = 0.031) was associated with reduced contractility of the PV walls (p = 0.004). The contractility of the LA walls was unaltered (p = 0.749). CONCLUSION: The ablation-induced PV diameter reduction was similar in patients with AF and healthy sheep without AF and was associated with PV scar extent. The volume only decreased in LA and not RA after PVI, and wall contractility decreased only in ablated sites. Therefore, the PVI-induced atrial downsizing is caused by the ablative energy and subsequent scar formation.

13.
Front Physiol ; 12: 709844, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512384

RESUMO

BACKGROUND: Pulmonary vein (PV) ablation is unsuccessful in atrial fibrillation (AF) patients with high left atrial (LA) pressure. Increased atrial stretch by increased pressure is proarrhythmic for AF, and myocardial scar alters wall deformation. We hypothesized that localized PV scar is proarrhythmic for AF in high LA pressure. METHODS: Radiofrequency energy was delivered locally in the right PV of healthy sheep. The sheep recovered for 4 months. Explanted hearts (n = 9 PV scar, n = 9 controls) were perfused with 1:4 blood:Tyrode's solution in a four-chamber working heart setup. Programmed PV stimulation was performed during low (∼12 mmHg) and high (∼25 mmHg) LA pressure. An AF inducibility index was calculated based on the number of induction attempts and the number of attempts causing AF (run of ≥ 20 premature atrial complexes). RESULTS: In high LA pressure, the presence of PV scar increased the AF inducibility index compared with control hearts (0.83 ± 0.20 vs. 0.38 ± 0.40 arb. unit, respectively, p = 0.014). The diastolic stimulation threshold in high LA pressure was higher (108 ± 23 vs. 77 ± 16 mA, respectively, p = 0.006), and its heterogeneity was increased in hearts with PV scar compared with controls. In high LA pressure, the refractory period was shorter in PV scar than in control hearts (178 ± 39 vs. 235 ± 48 ms, p = 0.011). CONCLUSION: Localized PV scar only in combination with increased LA pressure facilitated the inducibility of AF. This was associated with changes in tissue excitability remote from the PV scar. Localized PV ablation is potentially proarrhythmic in patients with increased LA pressure.

14.
Heart Rhythm ; 18(4): 553-561, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33127542

RESUMO

BACKGROUND: The QDOT MICRO catheter allows temperature- and flow-controlled (TFC) ablation and very-high-power short-duration (vHPSD) ablation. OBJECTIVE: The purpose of this study was to compare lesion characteristics between TFC/vHPSD ablation and standard power-controlled (PC) ablation. METHODS: Lesion characteristics in the right atrium, left atrium, and right ventricle (RV) of 6 sheep were compared between vHPSD (90 W/4 seconds, TC mode with 60°C target using QDOT) and standard radiofrequency settings (PC mode, 30 W/30 seconds with ThermoCool SmartTouch SF). Lesions in the left ventricle (LV) were compared, targeting 50 W for 60-second applications. RESULTS: Forty-six focal atrial lesions, 50 RV focal lesions, and 12 linear lesions were created by vHPSD ablation and PC ablation in each group of 6 animals. vHPSD ablation produced significantly larger focal atrial lesions in length (8.3 [6.4-9.7] mm vs 6.3 [5.2-7.4] mm; P = .0002), width (6.0 [5.3-6.9] mm vs 4.6 [3.8-5.4] mm; P <.0001), and surface area (39.4 [25.4-52.4] mm2 vs 23.6 [16.0-31.1] mm2; P = .0001), with superior transmurality (89.1% vs 69.6%; P = .04) compared to PC ablation. vHPSD ablation produced significantly larger RV lesions in length (7.7 [7.0-8.7] mm vs 6.0 [4.8-6.9] mm; P <.0001), width (6.4 [5.4-7.5] mm vs 4.3 [3.6-5.2] mm; P <.0001), and area (39.4 [29.1-50.1] mm2 vs 19.9 [14.7-25.2] mm2; P <.0001) but similar volume (P = .97) with shallower lesions (2.7 [2.2-3.4] mm vs 3.8 [3.0-4.4] mm; P <.0001). Atrial linear lesions were more homogeneous (P = .02), with fewer gaps in each line (P = .003) with vHPSD ablation. LV focal lesions (15 TFC mode; 21 PC mode) were similar in volume and depth, but lesion size showed less deviation (P <.05) in TFC than PC mode. Fewer steam pops were observed in TFC mode (0% vs 28.6%; P = .03). Hemorrhagic rings around the lesion core were generally smaller with TFC/vHPSD ablation (P <.05). CONCLUSION: TFC/vHPSD ablation produces larger, shallower, more homogeneous, and less hemorrhagic lesions. vHPSD Ablation produces more transmural and contiguous linear lesions compared to PC ablation. LV lesions are more homogeneous with fewer steam pops in TFC ablation.


Assuntos
Fibrilação Atrial/cirurgia , Função do Átrio Esquerdo/fisiologia , Biofísica/métodos , Ablação por Cateter/métodos , Frequência Cardíaca/fisiologia , Animais , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Feminino , Ovinos , Temperatura
15.
Heart Rhythm ; 18(3): 349-357, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33188900

RESUMO

BACKGROUND: Gaps in the roof line have been ascribed to epicardial conduction using the septopulmonary bundle. OBJECTIVES: We sought to evaluate the frequency of septopulmonary bundle bypass during roof line ablation, to describe anatomical conditions favoring this epicardial gap, and to propose an alternative strategy when present. METHODS: One hundred consecutive patients underwent atrial fibrillation ablation. A de novo roof line was created between the superior pulmonary veins. In cases of residual gaps, a floor line was created between the inferior pulmonary veins. Microtomography imaging and histological analyses of 5 human donor hearts were performed: a specific focus was made on the dome and the posterior wall. RESULTS: Residual gaps were more frequent in roof lines than floor lines (33% vs 15%; P = .049). Electrogram morphologies, activation sequences, and pacing maneuvers indicated an epicardial bypass of the roof line in all cases. Conduction block was obtained in 67 roof lines and 28 floor lines, resulting in a 95% success rate of linear block, without "box" isolation. Between the superior pulmonary veins, the atrial myocardium was thicker and consistently displayed adipose tissue separating the septopulmonary bundle from the septoatrial bundle. CONCLUSION: Epicardial conduction across the roof line is common and requires careful electrogram analysis to detect. In such cases, a floor line can be an effective alternative strategy, with clear validation criteria. Myocardial thickness and fat interposition may explain difficulties in achieving lesion transmurality during roof line ablation.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca/fisiologia , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Tomografia com Microscopia Eletrônica/métodos , Feminino , Sistema de Condução Cardíaco/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade
16.
Sci Rep ; 9(1): 15863, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676789

RESUMO

The epicardial and endocardial surfaces of the heart are attractive targets to administer antiarrhythmic electrotherapies. Electrically stimulating wide areas of the surfaces of small mammalian ventricles is straightforward given the relatively small scale of their myocardial dimensions compared to the tissue space constant and electrical field. However, it has yet to be proven for larger mammalian hearts with tissue properties and ventricular dimensions closer to humans. Our goal was to address the feasibility and impact of wide-area electrical stimulation on the ventricular surfaces of large mammalian hearts at different stimulus strengths. This was accomplished by placing long line electrodes on the ventricular surfaces of pig hearts that span wide areas, and activating them individually. Stimulus efficacy was assessed and compared between surfaces, and tissue viability was evaluated. Activation time was dependent on stimulation strength and location, achieving uniform linear stimulation at 9x threshold strength. Endocardial stimulation activated more tissue transmurally than epicardial stimulation, which could be considered a potential target for future cardiac electrotherapies. Overall, our results indicate that electrically stimulating wide areas of the ventricular surfaces of large mammals is achievable with line electrodes, minimal tissue damage, and energies under the human pain threshold (100 mJ).


Assuntos
Potenciais de Ação , Terapia por Estimulação Elétrica , Sistema de Condução Cardíaco/fisiopatologia , Contração Miocárdica , Miocárdio , Animais , Estimulação Elétrica , Ventrículos do Coração/fisiopatologia , Suínos
17.
Circ Arrhythm Electrophysiol ; 12(6): e007304, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31164003

RESUMO

Background Although proposed to facilitate pulmonary vein isolation (PVI), high-power ablation may favor extracardiac damage. Negative component abolition of the unipolar signal reflects lesion transmurality. The present study sought to evaluate the safety and efficacy of high-power ablation using unipolar signal modification as a local end point. Methods High power and standard power were compared in 4 swine and 100 consecutive patients referred for PVI. The first 50 patients were included in the control group (25-30 W) and the last 50 patients in the study group (40-50 W). Atrial radiofrequency applications were stopped 2 s (study group and swine) or 5 s (control group) after unipolar signal modification. Ventricular radiofrequency applications of 500 J (25 W·20 s versus 50 W·10 s) were performed at the swine epicardium. Results Swine gross necropsy did not show any extracardiac damage related to atrial lesions. At equal energy of 500 J, 50 W lesions were deeper (3±0.9 versus 2.6±1.1 mm; P=0.03) and wider (6.2±2 versus 5±2.3 mm; P=0.006) than 25 W lesions. No complications occurred during the clinical study, whatever the power output used for PVI. For a similar sinus rhythm maintenance at 12 months (90% versus 88%; P=0.75), the study group displayed higher first-pass PVI (92% versus 73%; P<0.001), lower acute pulmonary vein reconnection (2% versus 17%; P<0.001), reduced procedure time (73.1±18.2 versus 107.4±21.2 min; P<0.001), and ablation time (13±2.9 versus 30.3±8.8 min; P<0.001). Conclusions High-power PVI guided by unipolar signal modification safely decreases procedural burden while ensuring robust 12-month outcomes.


Assuntos
Potenciais de Ação , Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Frequência Cardíaca , Veias Pulmonares/cirurgia , Idoso , Animais , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Estudos de Casos e Controles , Ablação por Cateter/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Animais , Duração da Cirurgia , Estudos Prospectivos , Veias Pulmonares/fisiopatologia , Fatores de Risco , Sus scrofa , Fatores de Tempo , Resultado do Tratamento
18.
Circ Arrhythm Electrophysiol ; 11(10): e006059, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354410

RESUMO

BACKGROUND: Ventricular arrhythmias are frequent in patients with repaired tetralogy of Fallot (rTOF), but their origin and underlying mechanisms remain unclear. In this study, the involvement of left ventricular (LV) electrical and structural remodeling was assessed in an animal model mimicking rTOF sequelae. METHODS: Piglets underwent a tetralogy of Fallot repair-like surgery (n=6) or were sham operated (Sham, n=5). Twenty-three weeks post-surgery, cardiac function was assessed in vivo by magnetic resonance imaging. Electrophysiological properties were characterized by optical mapping. LV fibrosis and connexin-43 localization were assessed on histological sections and protein expression assessed by Western Blot. RESULTS: Right ventricular dysfunction was evident, whereas LV function remained unaltered in rTOF pigs. Optical mapping showed longer action potential duration on the rTOF LV epicardium and endocardium. Epicardial conduction velocity was significantly reduced in the longitudinal direction in rTOF LVs but not in the transverse direction compared with Sham. An elevated collagen content was found in LV basal and apical sections from rTOF pigs. Moreover, a trend for connexin-43 lateralization with no change in protein expression was found in the LV of rTOFs. Finally, rTOF LVs had a lower threshold for arrhythmia induction using incremental pacing protocols. CONCLUSIONS: We found an arrhythmogenic substrate with prolonged heterogeneous action potential duration and reduced conduction velocity in the LV of rTOF pigs. This remodeling precedes LV dysfunction and is likely to contribute to ventricular arrhythmias and sudden cardiac death in patients with rTOF.


Assuntos
Arritmias Cardíacas/etiologia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Ventrículos do Coração/fisiopatologia , Tetralogia de Fallot/cirurgia , Função Ventricular Esquerda , Remodelação Ventricular , Potenciais de Ação , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Conexina 43/metabolismo , Modelos Animais de Doenças , Fibrose , Frequência Cardíaca , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/metabolismo , Imageamento por Ressonância Magnética , Sus scrofa , Tetralogia de Fallot/fisiopatologia , Fatores de Tempo , Imagens com Corantes Sensíveis à Voltagem
19.
Circ Arrhythm Electrophysiol ; 11(8): e005913, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30354313

RESUMO

Background Papillary muscles are an important source of ventricular tachycardia (VT). Yet little is known about the role of the right ventricular (RV) endocavity structure, the moderator band (MB). The aim of this study was to determine the characteristics of the MB that may predispose to arrhythmia substrates. Methods Ventricular wedge preparations with intact MBs were studied from humans (n=2) and sheep (n=15; 40-50 kg). RV endocardium was optically mapped, and electrical recordings were measured along the MB and septum. S1S2 pacing of the RV free wall, MB, or combined S1-RV S2-MB sites were assessed. Human (n=2) and sheep (n=4) MB tissue constituents were assessed histologically. Results The MB structure was remarkably organized as 2 excitable, yet uncoupled compartments of myocardium and Purkinje. In humans, action potential duration heterogeneity between MB and RV myocardium was found (324.6±12.0 versus 364.0±8.4 ms; P<0.0001). S1S2-MB pacing induced unidirectional propagation via MB myocardium, permitting sustained macroreentrant VT. In sheep, the incidence of VT for RV, MB, and S1-RV S2-MB pacing was 1.3%, 5.1%, and 10.3%. Severing the MB led to VT termination, confirming a primary arrhythmic role. Inducible preparations had shorter action potential duration in the MB than RV (259.3±45.2 versus 300.7±38.5 ms; P<0.05), whereas noninducible preparations showed no difference (312.0±30.3 versus 310.0±24.6 ms, respectively). Conclusions The MB presents anatomic and electrical compartmentalization between myocardium and Purkinje fibers, providing a substrate for macroreentry. The vulnerability to sustain VT via this mechanism is dependent on MB structure and action potential duration gradients between the RV free wall and MB.


Assuntos
Potenciais de Ação , Frequência Cardíaca , Músculos Papilares/fisiopatologia , Taquicardia Ventricular/etiologia , Animais , Estimulação Cardíaca Artificial , Simulação por Computador , Técnicas Eletrofisiológicas Cardíacas , Humanos , Técnicas In Vitro , Modelos Cardiovasculares , Miocárdio/patologia , Músculos Papilares/patologia , Ramos Subendocárdicos/fisiopatologia , Carneiro Doméstico , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Imagens com Corantes Sensíveis à Voltagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa