Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34583989

RESUMO

The skeletal muscle L-type Ca2+ channel (CaV1.1) works primarily as a voltage sensor for skeletal muscle action potential (AP)-evoked Ca2+ release. CaV1.1 contains four distinct voltage-sensing domains (VSDs), yet the contribution of each VSD to AP-evoked Ca2+ release remains unknown. To investigate the role of VSDs in excitation-contraction coupling (ECC), we encoded cysteine substitutions on each S4 voltage-sensing segment of CaV1.1, expressed each construct via in vivo gene transfer electroporation, and used in cellulo AP fluorometry to track the movement of each CaV1.1 VSD in skeletal muscle fibers. We first provide electrical measurements of CaV1.1 voltage sensor charge movement in response to an AP waveform. Then we characterize the fluorescently labeled channels' VSD fluorescence signal responses to an AP and compare them with the waveforms of the electrically measured charge movement, the optically measured free myoplasmic Ca2+, and the calculated rate of Ca2+ release from the sarcoplasmic reticulum for an AP, the physiological signal for skeletal muscle fiber activation. A considerable fraction of the fluorescence signal for each VSD occurred after the time of peak Ca2+ release, and even more occurred after the earlier peak of electrically measured charge movement during an AP, and thus could not directly reflect activation of Ca2+ release or charge movement, respectively. However, a sizable fraction of the fluorometric signals for VSDs I, II, and IV, but not VSDIII, overlap the rising phase of charge moved, and even more for Ca2+ release, and thus could be involved in voltage sensor rearrangements or Ca2+ release activation.


Assuntos
Potenciais de Ação/fisiologia , Canais de Cálcio Tipo L/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/química , Acoplamento Excitação-Contração , Ativação do Canal Iônico , Camundongos , Coelhos , Retículo Sarcoplasmático/metabolismo
2.
Am J Hum Genet ; 105(4): 869-878, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564433

RESUMO

Intellectual disability (ID) is a genetically and clinically heterogeneous disorder, characterized by limited cognitive abilities and impaired adaptive behaviors. In recent years, exome sequencing (ES) has been instrumental in deciphering the genetic etiology of ID. Here, through ES of a large cohort of individuals with ID, we identified two bi-allelic frameshift variants in METTL5, c.344_345delGA (p.Arg115Asnfs∗19) and c.571_572delAA (p.Lys191Valfs∗10), in families of Pakistani and Yemenite origin. Both of these variants were segregating with moderate to severe ID, microcephaly, and various facial dysmorphisms, in an autosomal-recessive fashion. METTL5 is a member of the methyltransferase-like protein family, which encompasses proteins with a seven-beta-strand methyltransferase domain. We found METTL5 expression in various substructures of rodent and human brains and METTL5 protein to be enriched in the nucleus and synapses of the hippocampal neurons. Functional studies of these truncating variants in transiently transfected orthologous cells and cultured hippocampal rat neurons revealed no effect on the localization of METTL5 but alter its level of expression. Our in silico analysis and 3D modeling simulation predict disruption of METTL5 function by both variants. Finally, mettl5 knockdown in zebrafish resulted in microcephaly, recapitulating the human phenotype. This study provides evidence that biallelic variants in METTL5 cause ID and microcephaly in humans and highlights the essential role of METTL5 in brain development and neuronal function.


Assuntos
Alelos , Genes Recessivos , Deficiência Intelectual/genética , Metiltransferases/genética , Microcefalia/genética , Adolescente , Adulto , Pré-Escolar , Feminino , Humanos , Masculino , Linhagem
3.
STAR Protoc ; 4(4): 102599, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742178

RESUMO

Astrocytes are glial cells of the central nervous system that modulate neuronal function. Here, we present glyoxal-fixed astrocyte nuclei transcriptomics (GFAT), a protocol for the purification and transcriptomic analysis of astrocyte nuclei from the cortex and cerebellum of adult and aged fresh mouse brain. We describe steps for tissue dissection, glyoxal fixation, homogenization, nuclei isolation, antibody staining, fluorescence-activated cell sorting, and RT-qPCR or bulk RNA sequencing. GFAT does not require transgenic lines or viral injection and allows parallel astrocyte and neuron profiling.


Assuntos
Astrócitos , Núcleo Celular , Camundongos , Animais , Astrócitos/metabolismo , Núcleo Celular/metabolismo , Neuroglia , Perfilação da Expressão Gênica/métodos , Glioxal/metabolismo
4.
Neurosci Res ; 167: 17-29, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33316304

RESUMO

Glial cells are non-neuronal cells in the nervous system that are crucial for proper brain development and function. Three major classes of glia in the central nervous system (CNS) include astrocytes, microglia and oligodendrocytes. These cells have dynamic morphological and functional properties and constantly surveil neural activity throughout life, sculpting synaptic plasticity. Astrocytes form part of the tripartite synapse with neurons and perform many homeostatic functions essential to proper synaptic function including clearing neurotransmitter and regulating ion balance; they can modify these properties, in addition to additional mechanisms such as gliotransmitter release, to influence short- and long-term plasticity. Microglia, the resident macrophage of the CNS, monitor synaptic activity and can eliminate synapses by phagocytosis or modify synapses by release of cytokines or neurotrophic factors. Oligodendrocytes regulate speed of action potential conduction and efficiency of information exchange through the formation of myelin, having important consequences for the plasticity of neural circuits. A deeper understanding of how glia modulate synaptic and circuit plasticity will further our understanding of the ongoing changes that take place throughout life in the dynamic environment of the CNS.


Assuntos
Neuroglia , Plasticidade Neuronal , Astrócitos , Neurônios , Sinapses , Transmissão Sináptica
5.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34607805

RESUMO

The transcription factor cAMP response element-binding protein (CREB) is involved in a myriad of cellular functions in the central nervous system. For instance, the role of CREB via phosphorylation at the amino-acid residue Serine (Ser)133 in expressing plasticity-related genes and activity-dependent neuronal plasticity processes has been extensively demonstrated. However, much less is known about the role of CREB phosphorylation at Ser142 and Ser143. Here, we employed a viral vector containing a dominant negative form of CREB, with serine-to-alanine mutations at residue 142 and 143 to specifically block phosphorylation at both sites. We then transfected this vector into primary neurons in vitro or intracortically injected it into mice in vivo, to test whether these phosphorylation events were important for activity-dependent plasticity. We demonstrated by immunohistochemistry of cortical neuronal cultures that the expression of Arc, a known plasticity-related gene, requires triple phosphorylation of CREB at Ser133, Ser142, and Ser143. Moreover, we recorded visually-evoked field potentials in awake mice before and after a 7-d period of monocular deprivation (MD) to show that, in addition to CREB phosphorylation at Ser133, ocular dominance plasticity (ODP) in the visual cortex also requires CREB phosphorylation at Ser142/143. Our findings suggest that Ser142/143 phosphorylation is an additional post-translational modification of CREB that triggers the expression of specific target genes and activity-dependent neuronal plasticity processes.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Córtex Visual , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dominância Ocular , Camundongos , Fosforilação , Serina , Córtex Visual/metabolismo
6.
Histochem Cell Biol ; 134(4): 387-402, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20865272

RESUMO

We have previously demonstrated that Ca²+/calcineurin-dependent dephosphorylation of the transcription factor nuclear factor of activated T cells subtype 1 (NFATc1) during repetitive skeletal muscle activity causes NFAT nuclear translocation and concentration in subnuclear NFAT foci. We now show that NFAT nuclear foci colocalize with heterochromatin regions of intense staining by DAPI or TO-PRO-3 that are present in the nucleus prior to NFATc1 nuclear entry. Nuclear NFATc1 also colocalizes with the heterochromatin markers trimethyl-histone H3 (Lys9) and heterochromatin protein 1α. Mutation of the NFATc1 DNA binding sites prevents entry and localization of NFATc1 in heterochromatin regions. However, fluorescence in situ hybridization shows that the NFAT-regulated genes for slow and fast myosin heavy chains are not localized within the heterochromatin regions. Fluorescence recovery after photobleaching shows that within a given nucleus, NFATc1 redistributes relatively rapidly (t(¹/2) < 1 min) between NFAT foci. Nuclear export of an NFATc1 mutant not concentrated in NFAT foci is accelerated following nuclear entry during fiber activity, indicating buffering of free nuclear NFATc1 by NFATc1 within the NFAT foci. Taken together, our results suggest that NFAT foci serve as nuclear storage sites for NFATc1, allowing it to rapidly mobilize to other nuclear regions as required.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Heterocromatina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fatores de Transcrição NFATC/metabolismo , Adulto , Animais , Sítios de Ligação , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Hibridização in Situ Fluorescente , Camundongos , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mutação , Fatores de Transcrição NFATC/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
7.
Am J Physiol Cell Physiol ; 297(4): C955-70, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19657060

RESUMO

S100A1, a 21-kDa dimeric Ca2+-binding protein of the EF-hand type, is expressed in cardiomyocytes and is an important regulator of heart function. During ischemia, cardiomyocytes secrete S100A1 to the extracellular space. Although the effects of extracellular S100A1 have been documented in cardiomyocytes, it is unclear whether S100A1 exerts modulatory effects on other tissues in proximity with cardiac cells. Therefore, we sought to investigate the effects of exogenous S100A1 on Ca2+ signals and electrical properties of superior cervical ganglion (SCG) neurons. Immunostaining and Western blot assays indicated no endogenous S100A1 in SCG neurons. Cultured SCG neurons took up S100A1 when it was present in the extracellular medium. Inside the cell exogenous S100A1 localized in a punctate pattern throughout the cytoplasm but was excluded from the nuclei. S100A1 partially colocalized with markers for both receptor- and non-receptor-mediated endocytosis, indicating that in SCG neurons multiple endocytotic pathways are involved in S100A1 internalization. In compartmentalized SCG cultures, axonal projections were capable of uptake and transport of S100A1 toward the neuronal somas. Exogenous S100A1 applied either extra- or intracellularly enhanced Cav1 channel currents in a PKA-dependent manner, prolonged action potentials, and amplified action potential-induced Ca2+ transients. NMR chemical shift perturbation of Ca2+-S100A1 in the presence of a peptide from the regulatory subunit of PKA verifies that S100A1 directly interacts with PKA, and that this interaction likely occurs in the hydrophobic binding pocket of Ca2+-S100A1. Our results suggest the hypothesis that in sympathetic neurons exogenous S100A1 may lead to an increase of sympathetic output.


Assuntos
Potenciais de Ação , Canais de Cálcio Tipo L/fisiologia , Sinalização do Cálcio/fisiologia , Neurônios/fisiologia , Proteínas S100/metabolismo , Gânglio Cervical Superior/fisiologia , Animais , Axônios/fisiologia , Compartimento Celular/fisiologia , Células Cultivadas , Citoplasma/metabolismo , Endocitose/fisiologia , Ativação do Canal Iônico , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
8.
J Physiol ; 587(Pt 5): 1101-15, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19124542

RESUMO

The protein kinase PKD1 has recently been linked to slow fibre-type gene expression in fast skeletal muscle through phosphorylation of class II histone deacetylase (HDAC) molecules, resulting in nuclear efflux of HDAC and consequent activation of the transcription factor MEF2. However, possible upstream activators of PKD, and the time course and signalling pathway of downstream effectors have not been determined in skeletal muscle. Using fluorescent fusion proteins HDAC5-green fluorescent protein (GFP) and PKD1-mPlum expressed in fibres isolated from predominantly slow soleus muscle and maintained for 4 days in culture, we now show that alpha-adrenergic receptor activation by phenylephrine causes a transient, PKD-dependent HDAC5-GFP nuclear efflux. Concurrent to this response, PKD1-mPlum transiently redistributes from cytoplasm to plasma membrane and nuclei, and back, during 2 h exposure to phenylephrine. The recovery may reflect alpha-receptor desensitization. In contrast, the phorbol ester PMA (phorbol-12-myristate-13-acetate, a pharmacological mimic of the downstream mediator diacylglycerol in alpha-adrenergic signalling), caused continuous PKD-dependent HDAC5-GFP nuclear efflux and maintained PKD1-mPlum redistribution. In the absence of expressed HDAC, PMA increased histone H3 acetylation and increased MEF2 reporter activity in a PKD-dependent manner, consistent with PKD phosphorylation of endogenous HDAC(s) and reduced nuclear HDAC activity due to HDAC nuclear efflux. HDAC5-GFP did not respond to PMA in fibres from predominantly fast flexor digitorum brevis (FDB) muscle, but did in FDB fibres expressing exogenous PKD1. Our results demonstrate that a PKD-mediated signalling pathway for HDAC nuclear efflux is activated in slow skeletal muscle through adrenergic input, which is typically active in parallel with motor neurone input during muscular activity.


Assuntos
Núcleo Celular/metabolismo , Histona Desacetilases/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteína Quinase C/metabolismo , Receptores Adrenérgicos alfa/fisiologia , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Fatores Etários , Animais , Células Cultivadas , Ativação Enzimática/fisiologia , Camundongos , Camundongos Mutantes , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/enzimologia , Músculo Esquelético/enzimologia
9.
Cell Rep ; 26(7): 1893-1905.e7, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759398

RESUMO

Unresectable glioblastoma (GBM) cells in the invading tumor edge can act as seeds for recurrence. The molecular and phenotypic properties of these cells remain elusive. Here, we report that the invading edge and tumor core have two distinct types of glioma stem-like cells (GSCs) that resemble proneural (PN) and mesenchymal (MES) subtypes, respectively. Upon exposure to ionizing radiation (IR), GSCs, initially enriched for a CD133+ PN signature, transition to a CD109+ MES subtype in a C/EBP-ß-dependent manner. Our gene expression analysis of paired cohorts of patients with primary and recurrent GBMs identified a CD133-to-CD109 shift in tumors with an MES recurrence. Patient-derived CD133-/CD109+ cells are highly enriched with clonogenic, tumor-initiating, and radiation-resistant properties, and silencing CD109 significantly inhibits these phenotypes. We also report a conserved regulation of YAP/TAZ pathways by CD109 that could be a therapeutic target in GBM.


Assuntos
Adaptação Fisiológica/genética , Glioma/radioterapia , Radiação Ionizante , Glioma/patologia , Humanos
10.
Neuron ; 100(4): 860-875.e7, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30318410

RESUMO

Synaptic transmission is bioenergetically demanding, and the diverse processes underlying synaptic plasticity elevate these demands. Therefore, mitochondrial functions, including ATP synthesis and Ca2+ handling, are likely essential for plasticity. Although axonal mitochondria have been extensively analyzed, LTP is predominantly induced postsynaptically, where mitochondria are understudied. Additionally, though mitochondrial fission is essential for their function, signaling pathways that regulate fission in neurons remain poorly understood. We found that NMDAR-dependent LTP induction prompted a rapid burst of dendritic mitochondrial fission and elevations of mitochondrial matrix Ca2+. The fission burst was triggered by cytosolic Ca2+ elevation and required CaMKII, actin, and Drp1, as well as dynamin 2. Preventing fission impaired mitochondrial matrix Ca2+ elevations, structural LTP in cultured neurons, and electrophysiological LTP in hippocampal slices. These data illustrate a novel pathway whereby synaptic activity controls mitochondrial fission and show that dynamic control of fission regulates plasticity induction, perhaps by modulating mitochondrial Ca2+ handling.


Assuntos
Dendritos/fisiologia , Potenciação de Longa Duração/fisiologia , Dinâmica Mitocondrial/fisiologia , Animais , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
11.
Cell Calcium ; 41(6): 559-71, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17125834

RESUMO

NFATc-mediated gene expression constitutes a critical step during neuronal development and synaptic plasticity. Although considerable information is available regarding the activation and functionality of specific NFATc isoforms, in neurons little is known about how sensitive NFAT nuclear translocation is to specific patterns of electrical activity. Here we used high-speed fluo-4 confocal imaging to monitor action potential (AP)-induced cytosolic Ca2+ transients in rat sympathetic neurons. We have recorded phasic and repetitive AP patterns, and corresponding Ca2+ transients initiated by either long (100-800 ms) current-clamp pulses, or single brief (2 ms) electrical field stimulation. We address the functional consequences of these AP and Ca2+ transient patterns, by using an adenoviral construct to express NFATc1-CFP and evaluate NFATc1-CFP nuclear translocation in response to specific patterns of electrical activity. Ten Hertz trains stimulation induced nuclear translocation of NFATc1, whereas 1 Hz trains did not. However, 1 Hz train stimulation did result in NFATc1 translocation in the presence of 2 mM Ba2+, which inhibits M-currents and promotes repetitive firing and the accompanying small (approximately 0.6 DeltaF/F0) repetitive and summating Ca2+ transients. Our results demonstrate that M-current inhibition-mediated spike frequency facilitation enhances cytosolic Ca2+ signals and NFATc1 nuclear translocation during trains of low frequency electrical stimulation.


Assuntos
Sinalização do Cálcio/fisiologia , Núcleo Celular/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neurônios/fisiologia , Gânglio Cervical Superior/fisiologia , Potenciais de Ação , Transporte Ativo do Núcleo Celular , Animais , Canais de Cálcio Tipo N/metabolismo , Células Cultivadas , Estimulação Elétrica , Expressão Gênica , Masculino , Microscopia Confocal , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Gânglio Cervical Superior/citologia
12.
Exp Biol Med (Maywood) ; 237(9): 1068-83, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22966145

RESUMO

The transcription factor nuclear factor of activated T-cells 5 (NFAT5) is a key protector from hypertonic stress in the kidney, but its role in skeletal muscle is unexamined. Here, we evaluate the effects of glucose hypertonicity and hyperglycemia on endogenous NFAT5 activity, transverse tubular system morphology and Ca(2+) signaling in adult murine skeletal muscle fibers. We found that exposure to elevated glucose (25-50 mmol/L) increased NFAT5 expression and nuclear translocation, and NFAT-driven transcriptional activity. These effects were insensitive to the inhibition of calcineurin A, but sensitive to both p38α mitogen-activated protein kinases and phosphoinositide 3-kinase-related kinase inhibition. Fibers exposed to elevated glucose exhibited disrupted transverse tubular morphology, characterized by swollen transverse tubules and an increase in longitudinal connections between adjacent transverse tubules. Ca(2+) transients elicited by a single, brief electric field stimuli were increased in amplitude in fibers challenged by elevated glucose. Muscle fibers from type 1 diabetic mice exhibited increased NFAT5 expression and transverse tubule disruptions, but no differences in electrically evoked Ca(2+) transients. Our results suggest the hypothesis that these changes in skeletal muscle could play a role in the pathophysiology of acute and severe hyperglycemic episodes commonly observed in uncontrolled diabetes.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Glucose/metabolismo , Hiperglicemia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Animais , Inibidores de Calcineurina , Sinalização do Cálcio , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa