Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Oral Maxillofac Surg ; 77(11): 2245-2257, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31125537

RESUMO

PURPOSE: Approximately 2 to 4% of the US population have been estimated to seek treatment for temporomandibular symptoms, predominately women. The study purpose was to determine whether sex-specific differences in temporomandibular morphometry result from scaling with sex differences in skull size and shape or intrinsic sex-specific differences. MATERIALS AND METHODS: A total of 22 (11 male [aged 74.5 ± 9.1 years]; 11 female [aged 73.6 ± 12.8 years]) human cadaveric heads with no history of temporomandibular disc derangement underwent cone beam computed tomography and high-resolution magnetic resonance imaging scanning to determine 3-dimensional cephalometric parameters and temporomandibular morphometric outcomes. Regression models between morphometric outcomes and cephalometric parameters were developed, and intrinsic sex-specific differences in temporomandibular morphometry normalized by cephalometric parameters were determined. Subject-specific finite element (FE) models of the extreme male and extreme female conditions were developed to predict variations in articular disc stress-strain under the same joint loading. RESULTS: In some cases, sex differences in temporomandibular morphometric parameters could be explained by linear scaling with skull size and shape; however, scaling alone could not fully account for some differences between sexes, indicating intrinsic sex-specific differences. The intrinsic sex-specific differences in temporomandibular morphometry included an increased condylar medial length and mediolateral disc lengths in men and a longer anteroposterior disc length in women. Considering the extreme male and female temporomandibular morphometry observed in the present study, subject-specific FE models resulted in sex differences, with the extreme male joint having a broadly distributed stress field and peak stress of 5.28 MPa. The extreme female joint had a concentrated stress field and peak stress of 7.37 MPa. CONCLUSIONS: Intrinsic sex-specific differences independent of scaling with donor skull size were identified in temporomandibular morphometry. Understanding intrinsic sex-specific morphometric differences is critical to determining the temporomandibular biomechanics given the effect of anatomy on joint contact mechanics and stress-strain distributions and requires further study as one potential factor for the increased predisposition of women to temporomandibular disc derangement.


Assuntos
Luxações Articulares , Disco da Articulação Temporomandibular , Articulação Temporomandibular , Idoso , Idoso de 80 Anos ou mais , Cadáver , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Côndilo Mandibular/anatomia & histologia , Pessoa de Meia-Idade , Caracteres Sexuais , Crânio , Articulação Temporomandibular/anatomia & histologia , Disco da Articulação Temporomandibular/anatomia & histologia
2.
J Oral Maxillofac Surg ; 77(1): 42-53, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30076808

RESUMO

PURPOSE: Accurate description of the temporomandibular size and shape (morphometry) is critical for clinical diagnosis and surgical planning and the design and development of regenerative scaffolds and prosthetic devices and to model the temporomandibular loading environment. The study objective was to determine the 3-dimensional morphometry of the temporomandibular joint (TMJ) condyle and articular disc using cone-beam computed tomography (CBCT), magnetic resonance imaging (MRI), and physical measurements of the same joints using a repeated measures design and to determine the effect of the measurement technique on temporomandibular size and shape. MATERIALS AND METHODS: Human cadaveric heads underwent a multistep protocol to acquire physiologically meaningful measurements of the condyle and disc. The heads first underwent CBCT scanning, and solid models were automatically generated. The superficial soft tissues were dissected, and intact TMJs were excised and underwent MRI scanning, with solid models generated after manual segmentation. After MRI, the intact joints were dissected, and physical measurements of the condyle and articular disc were performed. The CBCT-based model measurements, MRI-based model measurements, and physical measurements were standardized, and a repeated measures study design was used to determine the effect of the measurement technique on the morphometric parameters. RESULTS: Multivariate general linear mixed effects models showed significant effects for measurement technique for condylar morphometric outcomes (P < .001) and articular disc morphometric outcomes (P < .001). The physical measurements after dissection were larger than either the CBCT-based or MRI-based measurements. Differences in imaging-based morphometric parameters followed a complex relationship between imaging modality resolution and contrast between tissue types. CONCLUSIONS: Physical measurements after dissection are still considered the reference standard. However, owing to their inaccessibility in vivo, understanding how the imaging technique affects the temporomandibular size and shape is critical toward the development of high-fidelity solid models to be used in the design and development of regenerative scaffolds, surgical planning, prosthetic devices, and anatomic investigations.


Assuntos
Côndilo Mandibular/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Imageamento por Ressonância Magnética , Articulação Temporomandibular , Transtornos da Articulação Temporomandibular
3.
J Biomech ; 130: 110889, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871896

RESUMO

The human temporomandibular joint (TMJ) lateral capsule ligament (LCL) complex is debated as a fibrous capsule with distinct ligaments or ligamentous thickening, necessitating further evaluation of the complex and its role in TMJ anatomy and mechanics. This study explores the ultrastructural arrangement, biomechanical tensile properties, and biochemical composition of the human LCL complex including region-specific differences to explore the presence of a distinct temporomandibular ligament and sex-specific differences to inform evaluations of potential etiological mechanisms. LCL complex ultrastructural arrangement, biomechanical properties, and biochemical composition were determined using cadaveric samples. Statistical modeling assessed sex- and region-specific effects on LCL complex tissue properties. Collagen fiber coherency, collagen fiber bundle size, and elastin fiber count did not differ between sexes, but females trended higher in elastin fiber count. LCL complex water and sGAG content did not differ between sexes or regions, but collagen content was higher in the anterior region (311.0 ± 185.6 µg/mg) compared to the posterior region (221.0 ± 124.9 µg/mg) (p = 0.045) across sexes and in males (339.6 ± 170.6 µg/mg) compared to females (204.5 ± 130.7 µg/mg) (p = 0.006) across regions. Anterior failure stress (1.1 ± 0.7 MPa) was larger than posterior failure stress (0.6 ± 0.4 MPa) (p = 0.024). Regional differences confirm the presence of a mechanically and compositionally distinct temporomandibular ligament. Baseline sex-specific differences are critical for etiological investigations of sex disparities in TMJ disorders. These results have important biomechanical and clinical ramifications, providing critical baseline tissue material properties, informing the development of TMJ musculoskeletal models, and identifying new areas for etiologic investigations for temporomandibular disorders.


Assuntos
Transtornos da Articulação Temporomandibular , Articulação Temporomandibular , Fenômenos Biomecânicos , Colágeno , Feminino , Humanos , Ligamentos Articulares , Masculino , Relação Estrutura-Atividade
4.
J Biomech ; 126: 110623, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34311291

RESUMO

Temporomandibular joint (TMJ) disorders disproportionally affect females, with female to male prevalence varying from 3:1 to 8:1. Sexual dimorphisms in masticatory muscle attachment morphometry and association with craniofacial size, critical for understanding sex-differences in TMJ function, have not been reported. The objective of this study was to determine sex-specific differences in three-dimensional (3D) TMJ muscle attachment morphometry and craniofacial sizes and their impact on TMJ mechanics. Human cadaveric TMJ muscle attachment morphometry and craniofacial anthropometry (10Males; 11Females) were determined by previously developed 3D digitization and imaging-based methods. Sex-differences in muscle attachment morphometry and craniofacial anthropometry, and their correlation were determined, respectively using multivariate general linear and linear regression statistical models. Subject-specific musculoskeletal models of the mandible were developed to determine effects of sexual dimorphisms in mandibular size and TMJ muscle attachment morphometry on joint loading during static biting. There were significant sex-differences in craniofacial size (p = 0.024) and TMJ muscle attachment morphometry (p < 0.001). TMJ muscle attachment morphometry was significantly correlated with craniofacial size. TMJ contact forces estimated from biomechanical models were significantly, 23% on average (p < 0.001), greater for females compared to those for males when generating the same bite forces. There were significant linear correlations between TMJ contact force and both 3D mandibular length (R2 = 0.48, p < 0.001) and muscle force moment arm ratio (R2 = 0.68, p < 0.001). Sexual dimorphisms in masticatory muscle morphology and craniofacial sizes play critical roles in subject-specific TMJ biomechanics. Sex-specific differences in the TMJ mechanical environment should be further investigated concerning mechanical fatigue of TMJ discs associated with TMJ disorders.


Assuntos
Caracteres Sexuais , Articulação Temporomandibular , Força de Mordida , Feminino , Humanos , Masculino , Mandíbula , Músculos da Mastigação
5.
Nat Commun ; 12(1): 1913, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772014

RESUMO

Diffusion is a major molecular transport mechanism in biological systems. Quantifying direction-dependent (i.e., anisotropic) diffusion is vitally important to depicting how the three-dimensional (3D) tissue structure and composition affect the biochemical environment, and thus define tissue functions. However, a tool for noninvasively measuring the 3D anisotropic extracellular diffusion of biorelevant molecules is not yet available. Here, we present light-sheet imaging-based Fourier transform fluorescence recovery after photobleaching (LiFT-FRAP), which noninvasively determines 3D diffusion tensors of various biomolecules with diffusivities up to 51 µm2 s-1, reaching the physiological diffusivity range in most biological systems. Using cornea as an example, LiFT-FRAP reveals fundamental limitations of current invasive two-dimensional diffusion measurements, which have drawn controversial conclusions on extracellular diffusion in healthy and clinically treated tissues. Moreover, LiFT-FRAP demonstrates that tissue structural or compositional changes caused by diseases or scaffold fabrication yield direction-dependent diffusion changes. These results demonstrate LiFT-FRAP as a powerful platform technology for studying disease mechanisms, advancing clinical outcomes, and improving tissue engineering.


Assuntos
Córnea/metabolismo , Espaço Extracelular/metabolismo , Recuperação de Fluorescência Após Fotodegradação/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Tendões/metabolismo , Animais , Anisotropia , Colágeno/química , Colágeno/metabolismo , Difusão , Análise de Fourier , Microscopia Confocal/métodos , Microscopia Eletrônica de Varredura/métodos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
6.
J Biomech ; 79: 119-128, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30166225

RESUMO

In musculoskeletal models of the human temporomandibular joint (TMJ), muscles are typically represented by force vectors that connect approximate muscle origin and insertion centroids (centroid-to-centroid force vectors). This simplification assumes equivalent moment arms and muscle lengths for all fibers within a muscle even with complex geometry and may result in inaccurate estimations of muscle force and joint loading. The objectives of this study were to quantify the three-dimensional (3D) human TMJ muscle attachment morphometry and examine its impact on TMJ mechanics. 3D muscle attachment surfaces of temporalis, masseter, lateral pterygoid, and medial pterygoid muscles of human cadaveric heads were generated by co-registering measured attachment boundaries with underlying skull models created from cone-beam computerized tomography (CBCT) images. A bounding box technique was used to quantify 3D muscle attachment size, shape, location, and orientation. Musculoskeletal models of the mandible were then developed and validated to assess the impact of 3D muscle attachment morphometry on joint loading during jaw maximal open-close. The 3D morphometry revealed that muscle lengths and moment arms of temporalis and masseter muscles varied substantially among muscle fibers. The values calculated from the centroid-to-centroid model were significantly different from those calculated using the 'Distributed model', which considered crucial 3D muscle attachment morphometry. Consequently, joint loading was underestimated by more than 50% in the centroid-to-centroid model. Therefore, it is necessary to consider 3D muscle attachment morphometry, especially for muscles with broad attachments, in TMJ musculoskeletal models to precisely quantify the joint mechanical environment critical for understanding TMJ function and mechanobiology.


Assuntos
Imageamento Tridimensional , Modelos Biológicos , Músculos/diagnóstico por imagem , Articulação Temporomandibular/diagnóstico por imagem , Idoso , Tomografia Computadorizada de Feixe Cônico , Humanos , Masculino , Músculos/anatomia & histologia , Músculos/fisiologia , Articulação Temporomandibular/anatomia & histologia , Articulação Temporomandibular/fisiologia
7.
Ann Biomed Eng ; 46(2): 310-317, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29181723

RESUMO

To investigate potential mechanisms associated with the increased prevalence of temporomandibular joint (TMJ) disorders among women, the study objective was to determine sex-dependent and region-dependent differences in fixed charge density (FCD) using an electrical conductivity method. Seventeen TMJ discs were harvested from nine males (77 ± 4 years) and eight females (86 ± 4 years). Specimens were prepared from the anterior band, posterior band, intermediate zone, medial disc and lateral disc. FCD was determined using an electrical conductivity method, assessing differences among disc regions and between sexes. Statistical modeling showed significant effects for donor sex (p = 0.002), with cross-region FCD for male discs 0.051 ± 0.018 milliequivalent moles per gram (mEq/g) wet tissue and 0.043 ± 0.020 mEq/g wet tissue for female discs. FCD was significantly higher for male discs compared to female discs in the posterior band, with FCD 0.063 ± 0.015 mEq/g wet tissue for male discs and 0.032 ± 0.020 mEq/g wet tissue for female discs (p = 0.050). These results indicate FCD contributes approximately 20% towards TMJ disc compressive modulus, through osmotic swelling pressure regulation. Additionally, FCD regulates critical extracellular ionic/osmotic and nutrient environments. Sexual dimorphisms in TMJ disc FCD, and resulting differences in extracellular ionic/osmotic and nutrient environments, could result in altered mechano-electro-chemical environments between males and females and requires further study.


Assuntos
Condutividade Elétrica , Caracteres Sexuais , Disco da Articulação Temporomandibular/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Disco da Articulação Temporomandibular/anatomia & histologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-27689140

RESUMO

BACKGROUND: Surgical treatments for early onset scoliosis (EOS) correct curvatures and improve respiratory function but involve many complications. A distractible, or 'growing rod,' implant construct that is more flexible than current metal rod systems may sufficiently correct curves in small children and reduce complications due to biomechanical factors. The purpose of this pilot study was to determine ranges of motion (ROM) after implantation of simulated growing rod constructs with a range of clinically relevant structural properties. The hypothesis was that ROM of spines instrumented with polymer rods would be greater than conventional metal rods and lower than non-instrumented controls. METHODS: Biomechanical tests were conducted on six thoracic spines from skeletally immature domestic swines (35-40 kg). Paired pedicle screws were used as anchors at proximal and distal levels. Specimens were tested under the following conditions: control, then dual rods of polyetheretherketone (PEEK) (diameter 6.25 mm), titanium (4 mm), and cobalt-chrome alloy (CoCr) (5 mm). Lateral bending (LB) and flexion-extension (FE) moments were applied, and vertebral rotations were measured. Differences were determined by two-tailed t-tests and Bonferroni for four primary comparisons: PEEK vs control and PEEK vs CoCr, in LB and FE (α = 0.05/4). RESULTS: In LB, ROM of spine segments after instrumenting with PEEK rods was lower than the non-instrumented control condition at each instrumented level. ROM was greater with PEEK rods than with Ti and CoCr rods at every instrumented level. Combining treated levels, in LB, ROM for PEEK rods was 35 % of control (p < 0.0001) and 270 % of CoCr rods (p < 0.01). In FE, ROM with PEEK was 27 % of control (p < 0.001) and 180 % of CoCr (p < 0.01). At proximal and distal adjacent non-instrumented levels in FE, mean ROM was lower for PEEK than for either metal. CONCLUSIONS: PEEK rods increased flexibility versus metal rods, and decreased flexibility versus non-instrumented controls, both over the entire instrumented segment and at each individual level. Smaller mean increases in ROM at proximal and distal adjacent motion segments occurred with PEEK compared to metal rods, which may help decrease complications, such as junctional kyphosis. Flexible growing rods may eventually help improve treatment options for young patients with severe deformity.

9.
J Biomech ; 49(16): 3762-3769, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27743627

RESUMO

Approximately 30% of temporomandibular joint (TMJ) disorders include degenerative changes to the articular disc, with sex-specific differences in prevalence and severity. Limited tensile biomechanical properties of human TMJ discs have been reported. Stress relaxation tests were conducted on TMJ disc specimens harvested bilaterally from six males and six females (68.9±7.9 years), with step-strain increments of 5%, 10%, 15%, 20% and 30%, at 1% strain-per-second. Stress versus strain plots were constructed, and Young׳s Modulus, Instantaneous Modulus and Relaxed Modulus were determined. The effects of direction, region, and sex were examined. Regional effects were significant (p<0.01) for Young׳s Modulus and Instantaneous Modulus. Anteroposteriorly, the central region was significantly stiffer than medial and lateral regions. Mediolaterally, the posterior region was significantly stiffer than central and anterior regions. In the central region, anteroposteriorly directed specimens were significantly stiffer compared to mediolateral specimens (p<0.04). TMJ disc stiffness, indicated by Young׳s Modulus and Instantaneous Modulus, was higher in directions corresponding to high fiber alignment. Additionally, human TMJ discs were stiffer for females compared to males, with higher Young׳s Modulus and Instantaneous Modulus, and female TMJ discs relaxed less. However, sex effects were not statistically significant. Using second-harmonic generation microscopy, regional collagen fiber organization was identified as a potentially significant factor in determining the biomechanical properties for any combination of direction and region. These findings establish structure-function relationships between collagen fiber direction and organization with biomechanical response to tensile loading, and may provide insights into the prevalence of TMJ disorders among women.


Assuntos
Disco da Articulação Temporomandibular/fisiologia , Idoso , Colágeno/fisiologia , Módulo de Elasticidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Estresse Mecânico , Transtornos da Articulação Temporomandibular/fisiopatologia , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa