Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Cell Physiol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888084

RESUMO

In academia, particularly in science, technology, engineering, and mathematics (STEM), writing accountability groups have emerged as an effective technique to enhance writing productivity by offering structure, increasing the commitment to write, and fostering social commitment. The rapid development of technology has introduced a new challenge across STEM fields: technostress, where individuals face heightened stress due to novel applications of technology. To address this, we introduce Technology Accountability Groups (TAGs), a novel form of community support for graduate students and faculty. TAGs are tailored to help individuals navigate technological innovations, alleviate technostress, acquire new skills, motivate, and connect with leaders in the field. This paper presents a framework for establishing, implementing, and sustaining TAGs in STEM.

2.
J Cell Physiol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770789

RESUMO

The sorting and assembly machinery (SAM) Complex is responsible for assembling ß-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.

3.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240383

RESUMO

Mitochondria contain connexins, a family of proteins that is known to form gap junction channels. Connexins are synthesized in the endoplasmic reticulum and oligomerized in the Golgi to form hemichannels. Hemichannels from adjacent cells dock with one another to form gap junction channels that aggregate into plaques and allow cell-cell communication. Cell-cell communication was once thought to be the only function of connexins and their gap junction channels. In the mitochondria, however, connexins have been identified as monomers and assembled into hemichannels, thus questioning their role solely as cell-cell communication channels. Accordingly, mitochondrial connexins have been suggested to play critical roles in the regulation of mitochondrial functions, including potassium fluxes and respiration. However, while much is known about plasma membrane gap junction channel connexins, the presence and function of mitochondrial connexins remain poorly understood. In this review, the presence and role of mitochondrial connexins and mitochondrial/connexin-containing structure contact sites will be discussed. An understanding of the significance of mitochondrial connexins and their connexin contact sites is essential to our knowledge of connexins' functions in normal and pathological conditions, and this information may aid in the development of therapeutic interventions in diseases linked to mitochondria.


Assuntos
Conexinas , Junções Comunicantes , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Membrana Celular/metabolismo , Mitocôndrias/metabolismo
4.
Pharmacol Res ; 140: 7-13, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30394319

RESUMO

The serotonin transporter (SERT) is an oligomeric glycoprotein with two sialic acid residues on each of two complex oligosaccharide molecules. Studies using in vivo and in vitro model systems demonstrated that diverse post-translational modifications, including phosphorylation, glycosylation, serotonylation, and disulfide bond formation, all favorably influences SERT conformation and allows the transporter to function most efficiently. This review discusses the post-translational modifications and their importance on the structure, maturation, and serotonin (5-HT) uptake ability of SERT. Finally, we discuss how these modifications are altered in diabetes mellitus and subsequently impairs the 5-HT uptake ability of SERT.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Diabetes Mellitus/metabolismo , Glicosilação , Humanos , Fosforilação
5.
J Biol Chem ; 291(18): 9657-65, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26921319

RESUMO

Earlier findings have identified the requirement of insulin signaling on maturation and the translocation of serotonin (5-HT) transporter, SERT to the plasma membrane of the trophoblast in placenta. Because of the defect on insulin receptor (IR) in the trophoblast of the gestational diabetes mellitus (GDM)-associated placenta, SERT is found entrapped in the cytoplasm of the GDM-trophoblast. SERT is encoded by the same gene expressed in trophoblast and platelets. Additionally, alteration in plasma 5-HT levels and the 5-HT uptake rates are associated with the aggregation rates of platelets. Therefore, here, we investigated a novel hypothesis that GDM-associated defects in platelet IR should change their 5-HT uptake rates, and this should be a leading factor for thrombosis in GDM maternal blood. The maternal blood and the placentas were obtained at the time of cesarean section from the GDM and non-diabetic subjects (n = 6 for each group), and the platelets and trophoblasts were isolated to determine the IR activity, surface level of SERT, and their 5-HT uptake rates.Interestingly, no significant differences were evident in IR tyrosine phosphorylation or the downstream elements, AKT and S6K in platelets and their aggregation rates in both groups. Furthermore, insulin stimulation up-regulated 5-HT uptake rates of GDM-platelets as it does in the control group. However, the phosphorylation of IR and the downstream elements were significantly lower in GDM-trophoblast and showed no response to the insulin stimulation while they showed 4-fold increase to insulin stimulation in control group. Similarly, the 5-HT uptake rates of GDM-trophoblast and the SERT expression on their surface were severalfold lower compared with control subjects. IR is expressed in all tissues, but it is not known if diabetes affects IR in all tissues equally. Here, for the first time, our findings with clinical samples show that in GDM-associated defect on IR is tissue type-dependent. While IR is impaired in GDM-placenta, it is unaffected in GDM-platelet.


Assuntos
Plaquetas/metabolismo , Diabetes Gestacional/metabolismo , Insulina/metabolismo , Receptor de Insulina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Trofoblastos/metabolismo , Adolescente , Adulto , Plaquetas/patologia , Diabetes Gestacional/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Gravidez , Receptor de Insulina/genética , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Serotonina/genética , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Trombose/genética , Trombose/metabolismo , Trombose/patologia , Trofoblastos/patologia
6.
J Cell Physiol ; 232(12): 3520-3529, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28109119

RESUMO

Serotonin (5-HT) and its specific transporter, SERT play important roles in pregnancy. Using placentas dissected from 18d gestational SERT-knock out (KO), peripheral 5-HT (TPH1)-KO, and wild-type (WT) mice, we explored the role of 5-HT and SERT in placental functions in detail. An abnormal thick band of fibrosis and necrosis under the giant cell layer in SERT-KO placentas appeared only moderately in TPH1-KO and minimally present in WT placentas. The majority of the changes were located at the junctional zone of the placentas in SERT. The etiology of these findings was tested with TUNEL assays. The placentas from SERT-KO and TPH1-KO showed 49- and 8-fold increase in TUNEL-positive cells without a concurrent change in the DNA repair or cell proliferation compared to WT placentas. While the proliferation rate in the embryos of TPH1-KO mice was 16-fold lower than the rate in gestational age matched embryos of WT or SERT-KO mice. These findings highlight an important role of continuous 5-HT signaling on trophoblast cell viability. SERT may contribute to protecting trophoblast cells against cell death via terminating the 5-HT signaling which changes cell death ratio in trophoblast as well as proliferation rate in embryos. However, the cell death in SERT-KO placentas is in caspase 3-independent pathway.


Assuntos
Apoptose , Caspase 3/metabolismo , Placenta/enzimologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Animais , Glicemia/metabolismo , Proliferação de Células , Feminino , Genótipo , Insulina/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Placenta/metabolismo , Gravidez , Serotonina/sangue , Proteínas da Membrana Plasmática de Transporte de Serotonina/deficiência , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Transdução de Sinais , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
9.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798364

RESUMO

Alzheimer's Disease (AD) is a global health issue, affecting over 6 million in the United States, with that number expected to increase as the aging population grows. As a neurodegenerative disorder that affects memory and cognitive functions, it is well established that AD is associated with cardiovascular risk factors beyond only cerebral decline. However, the study of cerebrovascular techniques for AD is still evolving. Here, we provide reproducible methods to measure impedance-based pulse wave velocity (PWV), a marker of arterial stiffness, in the systemic vascular (aortic PWV) and in the cerebral vascular (cerebral PWV) systems. Using aortic impedance and this relatively novel technique of cerebral impedance to comprehensively describe the systemic vascular and the cerebral vascular systems, we examined the sex-dependent differences in 5x transgenic mice (5XFAD) with AD under normal and high-fat diet, and in wild-type mice under a normal diet. Additionally, we validated our method for measuring cerebrovascular impedance in a model of induced stress in 5XFAD. Together, our results show that sex and diet differences in wildtype and 5XFAD mice account for very minimal differences in cerebral impedance. Interestingly, 5XFAD, and not wildtype, male mice on a chow diet show higher cerebral impedance, suggesting pathological differences. Opposingly, when we subjected 5XFAD mice to stress, we found that females showed elevated cerebral impedance. Using this validated method of measuring impedance-based aortic and cerebral PWV, future research may explore the effects of modifying factors including age, chronic diet, and acute stress, which may mediate cardiovascular risk in AD.

10.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826465

RESUMO

The physical characteristics of brown adipose tissue (BAT) are defined by the presence of multilocular lipid droplets (LD) within the brown adipocytes and a high abundance of iron-containing mitochondria, which give it its characteristic color. Normal mitochondrial function is, in part, regulated by organelle-to-organelle contacts. Particularly, the contact sites that mediate mitochondria-LD interactions are thought to have various physiological roles, such as the synthesis and metabolism of lipids. Aging is associated with mitochondrial dysfunction, and previous studies show that there are changes in mitochondrial structure and proteins that modulate organelle contact sites. However, how mitochondria-LD interactions change with aging has yet to be fully clarified. Therefore, we sought to define age-related changes in LD morphology and mitochondria-lipid interactions in BAT. We examined the three-dimensional morphology of mitochondria and LDs in young (3-month) and aged (2-year) murine BAT using serial block face-scanning electron microscopy and the Amira program for segmentation, analysis, and quantification. Analysis showed reductions in LD volume, area, and perimeter in aged samples compared to young samples. Additionally, we observed changes in LD appearance and type in aged samples compared to young samples. Notably, we found differences in mitochondrial interactions with LDs, which could implicate that these contacts may be important for energetics in aging. Upon further investigation, we also found changes in mitochondrial and cristae structure for mitochondria interacting with LD lipids. Overall, these data define the nature of LD morphology and organelle-organelle contacts during aging and provide insight into LD contact site changes that interconnect biogerontology and mitochondrial functionality, metabolism, and bioactivity in aged BAT.

11.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38168206

RESUMO

Age-related atrophy of skeletal muscle, is characterized by loss of mass, strength, endurance, and oxidative capacity during aging. Notably, bioenergetics and protein turnover studies have shown that mitochondria mediate this decline in function. Although exercise has been the only therapy to mitigate sarcopenia, the mechanisms that govern how exercise serves to promote healthy muscle aging are unclear. Mitochondrial aging is associated with decreased mitochondrial capacity, so we sought to investigate how aging affects mitochondrial structure and potential age-related regulators. Specifically, the three-dimensional (3D) mitochondrial structure associated with morphological changes in skeletal muscle during aging requires further elucidation. We hypothesized that aging causes structural remodeling of mitochondrial 3D architecture representative of dysfunction, and this effect is mitigated by exercise. We used serial block-face scanning electron microscopy to image human skeletal tissue samples, followed by manual contour tracing using Amira software for 3D reconstruction and subsequent analysis of mitochondria. We then applied a rigorous in vitro and in vivo exercise regimen during aging. Across 5 human cohorts, we correlate differences in magnetic resonance imaging, mitochondria 3D structure, exercise parameters, and plasma immune markers between young (under 50 years) and old (over 50 years) individuals. We found that mitochondria we less spherical and more complex, indicating age-related declines in contact site capacity. Additionally, aged samples showed a larger volume phenotype in both female and male humans, indicating potential mitochondrial swelling. Concomitantly, muscle area, exercise capacity, and mitochondrial dynamic proteins showed age-related losses. Exercise stimulation restored mitofusin 2 (MFN2), one such of these mitochondrial dynamic proteins, which we show is required for the integrity of mitochondrial structure. Furthermore, we show that this pathway is evolutionarily conserved as Marf, the MFN2 ortholog in Drosophila, knockdown alters mitochondrial morphology and leads to the downregulation of genes regulating mitochondrial processes. Our results define age-related structural changes in mitochondria and further suggest that exercise may mitigate age-related structural decline through modulation of mitofusin 2.

12.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915644

RESUMO

The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.

13.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37292887

RESUMO

The Sorting and Assembly Machinery (SAM) Complex is responsible for assembling ß-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system (MICOS) complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy (SBF-SEM) and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.

15.
J Am Heart Assoc ; 6(5)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522678

RESUMO

BACKGROUND: Cigarette smoking plays a major role in cardiovascular diseases. The acute effects of cigarette smoking produce central nervous system-mediated activation of the sympathetic nervous system. The overactive sympathetic nervous system stimulates the secretion of serotonin (5-HT) and catecholamine into blood at supraphysiological levels. The correlation between these pathological conditions induced by smoking and the increased risk of thrombosis has not been thoroughly investigated. The goal of our study was to explore cigarette smoking-associated changes in platelet biology mediated by elevated 5-HT and catecholamine levels in blood plasma. METHODS AND RESULTS: Using blood samples collected from healthy nonsmokers and smokers (15 minutes after smoking), we determined that cigarette smoking increased the plasma 5-HT/catecholamine concentration by several fold and the percent aggregation of platelets 2-fold. Liquid chromatography-tandem mass spectrometry analysis of proteins eluted from platelet plasma membranes of smokers and nonsmokers demonstrated that GTPase-activating proteins and proteins participating in the actin cytoskeletal network were differentially and significantly elevated in smokers' platelet membranes compared with those of nonsmokers. Interestingly, Matrix-assisted laser desorption/ionization-mass spectrometry analyses of the glycans eluted from platelet plasma membranes of the smokers demonstrated that the level and structures of glycans are different from the nonsmokers' platelet surface glycans. Pharmacological blockade of 5-HT or catecholamine receptors counteracted the 5-HT/catecholamine-mediated aggregation and altered the level and composition of glycan on platelet surfaces. CONCLUSIONS: Based on our findings, we propose that smoking-associated 5-HT/catecholamine signaling accelerates the trafficking dynamics of platelets, and this remodels the surface proteins and glycans and predisposes platelets to hyperactive levels. Smokers' platelets also had correspondingly higher resting concentrations of intracellular calcium and transglutaminase activity. These findings suggest a link among smoking, platelet 5-HT, catecholamine signaling, and their downstream effectors-including phospholipase C and inositol-1,4,5-triphosphate pathways-resulting in an increased tonic level of platelet activation in smokers.


Assuntos
Plaquetas/metabolismo , Membrana Celular/metabolismo , Epinefrina/sangue , Ativação Plaquetária , Serotonina/sangue , Transdução de Sinais , Fumar/sangue , Antagonistas Adrenérgicos beta/farmacologia , Adulto , Plaquetas/efeitos dos fármacos , Cálcio/sangue , Estudos de Casos e Controles , Membrana Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Humanos , Masculino , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Polissacarídeos/sangue , Transporte Proteico , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fumar/efeitos adversos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Fatores de Tempo , Transglutaminases/sangue , Regulação para Cima
16.
Sci Rep ; 6: 22747, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26956613

RESUMO

Hyperpermeability of the endothelial barrier and resulting microvascular leakage are a hallmark of sepsis. Our studies describe the mechanism by which serotonin (5-HT) regulates the microvascular permeability during sepsis. The plasma 5-HT levels are significantly elevated in mice made septic by cecal ligation and puncture (CLP). 5-HT-induced permeability of endothelial cells was associated with the phosphorylation of p21 activating kinase (PAK1), PAK1-dependent phosphorylation of vimentin (P-vimentin) filaments, and a strong association between P-vimentin and ve-cadherin. These findings were in good agreement with the findings with the endothelial cells incubated in serum from CLP mice. In vivo, reducing the 5-HT uptake rates with the 5-HT transporter (SERT) inhibitor, paroxetine blocked renal microvascular leakage and the decline in microvascular perfusion. Importantly, mice that lack SERT showed significantly less microvascular dysfunction after CLP. Based on these data, we propose that the increased endothelial 5-HT uptake together with 5-HT signaling disrupts the endothelial barrier function in sepsis. Therefore, regulating intracellular 5-HT levels in endothelial cells represents a novel approach in improving sepsis-associated microvascular dysfunction and leakage. These new findings advance our understanding of the mechanisms underlying cellular responses to intracellular/extracellular 5-HT ratio in sepsis and refine current views of these signaling processes during sepsis.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Plasma/química , Sepse/patologia , Sepse/fisiopatologia , Serotonina/sangue , Serotonina/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Agonistas do Receptor de Serotonina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa