Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167516

RESUMO

Cork oak (Quercus suber L.) is an evergreen tree native to SW Europe and NW Africa. It covers 2·106 ha in the western Mediterranean basin, forms heterogeneous forest ecosystems and represents an important source of income derived from cork production. While in Iberia, Italy, Tunisia and Algeria, drought and several endemic pathogens have been associated with cork oak decline (Moricca et al. 2016; Smahi et al. 2017), in Morocco there is no evidence, apart from overgrazing and human intervention (Fennane and Rejdali 2015), of a pathogen associated with oak decline. In December 2019, extensive dieback and mortality of 60-year-old cork oak trees were observed in a natural stand of ca 150 ha located 5 km east from Touazithe, in Maâmora forest, Morocco (34°13'38''N, 6°14'51''W - 87 m a.s.l.). Two years before, Q. suber seedlings from a local nursery were planted to increase tree density. Symptoms in trees and planted seedlings included chlorosis, reddish-brown discoloration of the whole crown and dieback starting in the upper crown. Root rot and lack of fine roots were observed. Tree mortality was estimated at ca 30%, and disease incidences of trees and seedlings were 45 and 70%, respectively. A Phytophthora species was consistently isolated from the rhizosphere of 3 symptomatic trees randomly selected at the site using leaves as bait (Jung et al. 1996). On carrot agar Phytophthora colonies were uniform and cottonwool-like. Sporangia were typically terminal, with ovoid, and obpyriform shape, mostly papillate, measuring 30.7 ± 4.7 µm length and 22.7 ± 4.1 µm wide. Oogonia were produced in single culture, and they were globose to subglobose, elongated to ellipsoid, 32.1 ± 2.9 µm in diameter and 46.1 ± 4.8 µm in length. Oospores were usually spherical, thick-walled, and measured 28.1 ± 2.4 µm. Antheridia were paragynous, mostly spherical, measuring 12.2 ± 1.4 µm. Isolates had minimum and maximum temperatures of 5 °C and 30 °C, respectively, and a growth optimum at 20 °C. Apart from the small size of sporangia, features were typical of Phytophthora quercina Jung. The identity of a representative strain (TJ1500) was corroborated by sequencing the ITS and mitochondrial cox1 gene regions, and BLAST search in GenBank showed 100% homology with sequences of the ex-type culture of P. quercina (KF358229 and KF358241 accessions, respectively). Both sequences of the representative isolate were submitted to GenBank (accessions OP086243 and OP290549). The strain TJ1500 is currently stored within the culture collections of the Mendel University in Brno and the University of Sassari. Its pathogenicity was verified and compared with a P. cinnamomi strain in a soil infestation test with one-year-old cork oak seedlings (Corcobado et al. 2017). Five months after inoculation, the symptoms described were observed in the seedlings, and fine root weight of plants inoculated with the TJ1500 strain and P. cinnamomi was reduced by 19 and 42%, respectively, in relation to non-inoculated controls. The pathogen was re-isolated from the necrotic roots, thus fulfilling Koch's postulates. So far, P. quercina has been reported associated with chronic mortality of cork oak in new plantations in Spain (Martín-García et al. 2015; Jung et al. 2016) and natural forests in Italy (Seddaiu et al. 2020). To our knowledge this is the first report of P. quercina in Morocco. Givenat Morocco is an important cork producing country, our finding warns about the risk this pathogen poses to Q. suber and other North African oaks.

2.
Phytopathology ; 110(12): 1959-1969, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32633698

RESUMO

In pathogenic fungi and oomycetes, interspecific hybridization may lead to the formation of new species having a greater impact on natural ecosystems than the parental species. From the early 1990s, a severe alder (Alnus spp.) decline due to an unknown Phytophthora species was observed in several European countries. Genetic analyses revealed that the disease was caused by the triploid hybrid P. × alni, which originated in Europe from the hybridization of P. uniformis and P. × multiformis. Here, we investigated the population structure of P. × alni (158 isolates) and P. uniformis (85 isolates) in several European countries using microsatellite markers. Our analyses confirmed the genetic structure previously observed in other European populations, with P. uniformis populations consisting of at most two multilocus genotypes (MLGs) and P. × alni populations dominated by MLG Pxa-1. The genetic structure of P. × alni populations in the Czech Republic, Hungary and Sweden seemed to reflect the physical isolation of river systems. Most rare P. × alni MLGs showed a loss of heterozygosity (LOH) at one or a few microsatellite loci compared with other MLGs. This LOH may allow a stabilization within the P. × alni genome or a rapid adaptation to stress situations. Alternatively, alleles may be lost because of random genetic drift in small, isolated populations, with no effect on fitness of P. × alni. Additional studies would be necessary to confirm these patterns of population diversification and to better understand the factors driving it.


Assuntos
Phytophthora , Ecossistema , Europa (Continente) , Variação Genética , Genótipo , Repetições de Microssatélites/genética , Phytophthora/genética , Doenças das Plantas , Suécia
3.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366172

RESUMO

Climate shapes the distribution of plant-associated microbes such as mycorrhizal and endophytic fungi. However, the role of climate in plant pathogen community assembly is less understood. Here, we explored the role of climate in the assembly of Phytophthora communities at >250 sites along a latitudinal gradient from Spain to northern Sweden and an altitudinal gradient from the Spanish Pyrenees to lowland areas. Communities were detected by ITS sequencing of river filtrates. Mediation analysis supported the role of climate in the biogeography of Phytophthora and ruled out other environmental factors such as geography or tree diversity. Comparisons of functional and species diversity showed that environmental filtering dominated over competitive exclusion in Europe. Temperature and precipitation acted as environmental filters at different extremes of the gradients. In northern regions, winter temperatures acted as an environmental filter on Phytophthora community assembly, selecting species adapted to survive low minimum temperatures. In southern latitudes, a hot dry climate was the main environmental filter, resulting in communities dominated by drought-tolerant Phytophthora species with thick oospore walls, a high optimum temperature for growth, and a high maximum temperature limit for growth. By taking a community ecology approach, we show that the establishment of Phytophthora plant pathogens in Europe is mainly restricted by cold temperatures.


Assuntos
Clima , Plantas , Temperatura , Estações do Ano , Europa (Continente) , Mudança Climática
4.
Mol Plant Pathol ; 25(4): e13450, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590129

RESUMO

Phytophthora pseudosyringae is a self-fertile pathogen of woody plants, particularly associated with tree species from the genera Fagus, Notholithocarpus, Nothofagus and Quercus, which is found across Europe and in parts of North America and Chile. It can behave as a soil pathogen infecting roots and the stem collar region, as well as an aerial pathogen infecting leaves, twigs and stem barks, causing particular damage in the United Kingdom and western North America. The population structure, migration and potential outcrossing of a worldwide collection of isolates were investigated using genotyping-by-sequencing. Coalescent-based migration analysis revealed that the North American population originated from Europe. Historical gene flow has occurred between the continents in both directions to some extent, yet contemporary migration is overwhelmingly from Europe to North America. Two broad population clusters dominate the global population of the pathogen, with a subgroup derived from one of the main clusters found only in western North America. Index of association and network analyses indicate an influential level of outcrossing has occurred in this preferentially inbreeding, homothallic oomycete. Outcrossing between the two main population clusters has created distinct subgroups of admixed individuals that are, however, less common than the main population clusters. Differences in life history traits between the two main population clusters should be further investigated together with virulence and host range tests to evaluate the risk each population poses to natural environments worldwide.


Assuntos
Phytophthora , Humanos , Filogeografia , Phytophthora/genética , Doenças das Plantas , Plantas , Árvores
5.
Sci Total Environ ; : 173619, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825208

RESUMO

The globalization in plant material trading has caused the emergence of invasive pests in many ecosystems, such as the alder pathogen Phytophthora ×alni in European riparian forests. Due to the ecological importance of alder to the functioning of rivers and the increasing incidence of P. ×alni-induced alder decline, effective and accessible decision tools are required to help managers and stakeholders control the disease. This study proposes a Bayesian belief network methodology to integrate diverse information on the factors affecting the survival and infection ability of P. ×alni in riparian habitats to help predict and manage disease incidence. The resulting Alder Decline Network (ADnet) management tool integrates information about alder decline from scientific literature, expert knowledge and empirical data. Expert knowledge was gathered through elicitation techniques that included 19 experts from 12 institutions and 8 countries. An original dataset was created covering 1189 European locations, from which P. ×alni occurrence was modeled based on bioclimatic variables. ADnet uncertainty was evaluated through its sensitivity to changes in states and three scenario analyses. The ADnet tool indicated that mild temperatures and high precipitation are key factors favoring pathogen survival. Flood timing, water velocity, and soil type have the strongest influence on disease incidence. ADnet can support ecosystem management decisions and knowledge transfer to address P. ×alni-induced alder decline at local or regional levels across Europe. Management actions such as avoiding the planting of potentially infected trees or removing man-made structures that increase the flooding period in disease-affected sites could decrease the incidence of alder disease in riparian forests and limit its spread. The coverage of the ADnet tool can be expanded by updating data on the pathogen's occurrence, particularly from its distributional limits. Research on the role of genetic variability in alder susceptibility and pathogen virulence may also help improve future ADnet versions.

6.
Mycol Prog ; 22(7): 50, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323627

RESUMO

Waterways are ideal pathways for Phytophthora dispersal and potential introduction to terrestrial ecosystems. While many Phytophthora species from phylogenetic clades 6, 9 and 10 are predominant oomycetes in watercourses due to their adaptation to a lifestyle as saprotrophs and opportunistic pathogens of riparian plants, species from clades 2, 7 and 8 are predominantly soil- or airborne using aquatic habitats as temporal niches for spreading and invading terrestrial sites along the watercourses. In contrast to forest ecosystems, knowledge of Phytophthora diversity in watercourses in Central Europe is limited. Between 2014 and 2019 extensive surveys of streams and rivers were undertaken across Austria, in South Moravia, Czech Republic and Zilina province, Slovakia to unveil the diversity and distribution of Phytophthora and related oomycetes. In addition, in Austria riparian forests of black alder (Alnus glutinosa) and grey alder (A. incana) in lowlands and in the Alps were examined. A variety of Phytophthora species from clades 2, 6, 7, 8, 9 and 10 were isolated, with clade 6 species showing the widest distribution and abundance. Furthermore, interspecific clade 6 hybrids and other oomycetes such as Halophytophthora fluviatilis and undescribed Nothophytophthora spp. were also obtained. In riparian alders, symptoms of Phytophthora infections were associated with species from the P. × alni complex and P. plurivora. Phytophthora plurivora was most common in alder stands whereas P. uniformis was the oomycete species occurring at the highest altitude in alpine riparian areas. Supplementary Information: The online version contains supplementary material available at 10.1007/s11557-023-01898-1.

7.
J Fungi (Basel) ; 8(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35330301

RESUMO

Phytophthora infections are followed by histological alterations, physiological and metabolomic adjustments in the host but very few studies contemplate these changes simultaneously. Fagus sylvatica seedlings were inoculated with A1 and A2 mating types of the heterothallic P. ×cambivora and with the homothallic P. plurivora to identify plant physiological and metabolomic changes accompanying microscope observations of the colonization process one, two and three weeks after inoculation. Phytophthora plurivora-infected plants died at a faster pace than those inoculated with P. ×cambivora and showed higher mortality than P. ×cambivora A1-infected plants. Phytophthora ×cambivora A1 and A2 caused similar progression and total rate of mortality. Most differences in the physiological parameters between inoculated and non-inoculated plants were detected two weeks after inoculation. Alterations in primary and secondary metabolites in roots and leaves were demonstrated for all the inoculated plants two and three weeks after inoculation. The results indicate that P. plurivora is more aggressive to Fagus sylvatica seedlings than both mating types of P. ×cambivora while P. ×cambivora A1 showed a slower infection mode than P. ×cambivora A2 and led to minor plant metabolomic adjustments.

8.
J Fungi (Basel) ; 7(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803849

RESUMO

As global plant trade expands, tree disease epidemics caused by pathogen introductions are increasing. Since ca 2000, the introduced oomycete Phytophthora ramorum has caused devastating epidemics in Europe and North America, spreading as four ancient clonal lineages, each of a single mating type, suggesting different geographical origins. We surveyed laurosilva forests for P. ramorum around Fansipan mountain on the Vietnam-China border and on Shikoku and Kyushu islands, southwest Japan. The surveys yielded 71 P. ramorum isolates which we assigned to eight new lineages, IC1 to IC5 from Vietnam and NP1 to NP3 from Japan, based on differences in colony characteristics, gene x environment responses and multigene phylogeny. Molecular phylogenetic trees and networks revealed the eight Asian lineages were dispersed across the topology of the introduced European and North American lineages. The deepest node within P. ramorum, the divergence of lineages NP1 and NP2, was estimated at 0.5 to 1.6 Myr. The Asian lineages were each of a single mating type, and at some locations, lineages of "opposite" mating type were present, suggesting opportunities for inter-lineage recombination. Based on the high level of phenotypic and phylogenetic diversity in the sample populations, the coalescence results and the absence of overt host symptoms, we conclude that P. ramorum comprises many anciently divergent lineages native to the laurosilva forests between eastern Indochina and Japan.

9.
Ambio ; 48(1): 1-12, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29572607

RESUMO

Political action can reduce introductions of diseases caused by invasive forest pathogens (IPs) and public support is important for effective prevention. The public's awareness of IP problems and the acceptability of policies aiming to combat these pathogens were surveyed in nine European countries (N = 3469). Although awareness of specific diseases (e.g., ash dieback) varied, problem awareness and policy acceptability were similar across countries. The public was positive towards policies for informational measures and stricter standards for plant production, but less positive towards restricting public access to protected areas. Multilevel models, including individual and country level variables, revealed that media exposure was positively associated with awareness of IP problems, and strengthened the link between problem awareness and policy acceptability. Results suggest that learning about IPs through the media and recognizing the associated problems increase policy acceptability. Overall, the study elaborates on the anthropogenic dimension of diseases caused by IPs.


Assuntos
Florestas , Políticas , Europa (Continente) , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa