Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 62: 8-17, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24055213

RESUMO

Chronic intermittent hypoxia (CIH) is an underlying component of obstructive sleep apnoea and has been shown to have deleterious and damaging effects on central neurons and to impair synaptic plasticity in the CA1 region of the rat hippocampus. CIH has previously been shown to impair synaptic plasticity and working memory. CIH is a potent inducer of hypoxia inducible factor (HIF), a key regulator in a cell's adaptation to hypoxia that plays an important role in the fate of neurons during ischemia. Levels of HIF-1α are regulated by the activity of a group of enzymes called HIF-prolyl 4-hydroxylases (PHDs) and these have become potential pharmacological targets for preconditioning against ischemia. However little is known about the effects of prolyl hydroxylase inhibition and CIH on synaptic transmission and plasticity in sub-regions of the hippocampus. Male Wistar rats were treated for 7-days with either saline, CIH or PHD inhibition (dimethyloxaloylglycine, DMOG; 50mg/kg, i.p.). At the end of treatment all three groups showed no change in synaptic excitability using paired pulse paradigms. However long-term potentiation (LTP) was impaired in the CA1 region of the hippocampus in both CIH and DMOG treated animals. LTP induced in the dentate gyrus was not significantly affected by either CIH or DMOG treatment. We also investigated the effect of 7-day CIH and DMOG treatment on the recovery of synaptic transmission following an acute 30min hypoxic insult. CIH treated animals showed an improved rate of recovery of synaptic transmission following re-oxygenation in both the CA1 and the dentate gyrus. These results suggest that LTP induction in the CA1 region is more sensitive to both CIH and DMOG treatments than the dentate gyrus.


Assuntos
Aminoácidos Dicarboxílicos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Hipóxia Encefálica/fisiopatologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Plasticidade Neuronal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiopatologia , Proteína de Ligação a CREB/metabolismo , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiopatologia , Eritropoetina/metabolismo , Hematócrito , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Ratos , Ratos Wistar
2.
Brain Res ; 1701: 212-218, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30244114

RESUMO

In the CNS short episodes of acute hypoxia can result in a decrease in synaptic transmission which may be fully reversible upon re-oxygenation. Stabilization of hypoxia-inducible factor (HIF) by inhibition of prolyl hydroxylase domain (PHD) enzymes has been shown to regulate the cellular response to hypoxia and confer neuroprotection both in vivo and in vitro. Hypoxic preconditioning has become a novel therapeutic target to induce neuroprotection during hypoxic insults. However, there is little understanding of the effects of repeated hypoxic insults or pharmacological PHD inhibition on synaptic signaling. In this study we have assessed the effects of hypoxic exposure and PHD inhibition on synaptic transmission in the rat CA1 hippocampus. Field excitatory postsynaptic potentials (fEPSPs) were elicited by stimulation of the Schaffer collateral pathway. 30 min hypoxia (gas mixture 95% N2/5% CO2) resulted in a significant and fully reversible decrease in fEPSP slope associated with decreases in partial pressures of tissue oxygen. 15-30 min of hypoxia was sufficient to induce stabilization of HIF in hippocampal slices. Exposure to a second hypoxic insult after 60 min resulted in a similar depression of fEPSP slope but with a significantly greater rate of recovery of the fEPSP. Prior single treatment of slices with the PHD inhibitor, dimethyloxalylglycine (DMOG) also resulted in a significantly greater rate of recovery of fEPSP post hypoxia. These results suggest that hypoxia and 'pseudohypoxia' preconditioning may improve the rate of recovery of hippocampal neurons to a subsequent acute hypoxia.


Assuntos
Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipóxia/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Transmissão Sináptica/fisiologia , Aminoácidos Dicarboxílicos/farmacologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Hipóxia Celular/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos , Lobo Temporal/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa