Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(6): 100, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630291

RESUMO

In multiple myeloma (MM), B cell maturation antigen (BCMA)-directed CAR T cells have emerged as a novel therapy with potential for long-term disease control. Anti-BCMA CAR T cells with a CD8-based transmembrane (TM) and CD137 (41BB) as intracellular costimulatory domain are in routine clinical use. As the CAR construct architecture can differentially impact performance and efficacy, the optimal construction of a BCMA-targeting CAR remains to be elucidated. Here, we hypothesized that varying the constituents of the CAR structure known to impact performance could shed light on how to improve established anti-BCMA CAR constructs. CD8TM.41BBIC-based anti-BCMA CAR vectors with either a long linker or a short linker between the light and heavy scFv chain, CD28TM.41BBIC-based and CD28TM.CD28IC-based anti-BCMA CAR vector systems were used in primary human T cells. MM cell lines were used as target cells. The short linker anti-BCMA CAR demonstrated higher cytokine production, whereas in vitro cytotoxicity, T cell differentiation upon activation and proliferation were superior for the CD28TM.CD28IC-based CAR. While CD28TM.CD28IC-based CAR T cells killed MM cells faster, the persistence of 41BBIC-based constructs was superior in vivo. While CD28 and 41BB costimulation come with different in vitro and in vivo advantages, this did not translate into a superior outcome for either tested model. In conclusion, this study showcases the need to study the influence of different CAR architectures based on an identical scFv individually. It indicates that current scFv-based anti-BCMA CAR with clinical utility may already be at their functional optimum regarding the known structural variations of the scFv linker.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Antígeno de Maturação de Linfócitos B , Anticorpos , Antígenos CD28 , Terapia Baseada em Transplante de Células e Tecidos
2.
Nat Med ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977912

RESUMO

Although chimeric antigen receptor (CAR) T cell therapy represents a transformative immunotherapy, it is also associated with distinct toxicities that contribute to morbidity and mortality. In this systematic review and meta-analysis, we searched MEDLINE, Embase and CINAHL (Cochrane) for reports of nonrelapse mortality (NRM) after CAR T cell therapy in lymphoma and multiple myeloma up to March 2024. After extraction of causes and numbers of death, we analyzed NRM point estimates using random-effect models. We identified 7,604 patients across 18 clinical trials and 28 real-world studies. NRM point estimates varied across disease entities and were highest in patients with mantle-cell lymphoma (10.6%), followed by multiple myeloma (8.0%), large B cell lymphoma (6.1%) and indolent lymphoma (5.7%). Entity-specific meta-regression models for large B cell lymphoma and multiple myeloma revealed that axicabtagene ciloleucel and ciltacabtagene autoleucel were independently associated with increased NRM point estimates, respectively. Of 574 reported nonrelapse deaths, over half were attributed to infections (50.9%), followed by other malignancies (7.8%) and cardiovascular/respiratory events (7.3%). Conversely, the CAR T cell-specific side effects, immune effector cell-associated neurotoxicity syndrome/neurotoxicity, cytokine release syndrome and hemophagocytic lymphohistiocytosis, represented only a minority of nonrelapse deaths (cumulatively 11.5%). Our findings underline the critical importance of infectious complications after CAR T cell therapy and support the comprehensive reporting of NRM, including specific causes and long-term outcomes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa