Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33846251

RESUMO

Plastic pollution is one of the most pressing environmental and social issues of the 21st century. Recent work has highlighted the atmosphere's role in transporting microplastics to remote locations [S. Allen et al., Nat. Geosci. 12, 339 (2019) and J. Brahney, M. Hallerud, E. Heim, M. Hahnenberger, S. Sukumaran, Science 368, 1257-1260 (2020)]. Here, we use in situ observations of microplastic deposition combined with an atmospheric transport model and optimal estimation techniques to test hypotheses of the most likely sources of atmospheric plastic. Results suggest that atmospheric microplastics in the western United States are primarily derived from secondary re-emission sources including roads (84%), the ocean (11%), and agricultural soil dust (5%). Using our best estimate of plastic sources and modeled transport pathways, most continents were net importers of plastics from the marine environment, underscoring the cumulative role of legacy pollution in the atmospheric burden of plastic. This effort uses high-resolution spatial and temporal deposition data along with several hypothesized emission sources to constrain atmospheric plastic. Akin to global biogeochemical cycles, plastics now spiral around the globe with distinct atmospheric, oceanic, cryospheric, and terrestrial residence times. Though advancements have been made in the manufacture of biodegradable polymers, our data suggest that extant nonbiodegradable polymers will continue to cycle through the earth's systems. Due to limited observations and understanding of the source processes, there remain large uncertainties in the transport, deposition, and source attribution of microplastics. Thus, we prioritize future research directions for understanding the plastic cycle.


Assuntos
Atmosfera/química , Monitoramento Ambiental/métodos , Microplásticos/efeitos adversos , Atmosfera/análise , Poeira , Poluição Ambiental/análise , Microplásticos/química , Material Particulado/análise , Plásticos/análise , Plásticos/química , Polímeros , Solo
2.
J Phys Chem A ; 119(33): 8860-70, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26196268

RESUMO

Sea spray aerosol (SSA) particles represent one of the most abundant surfaces available for heterogeneous reactions to occur upon and thus profoundly alter the composition of the troposphere. In an effort to better understand tropospheric heterogeneous reaction processes, fundamental laboratory studies must be able to accurately reproduce the chemical complexity of SSA. Here we describe a new approach that uses microbial processes to control the composition of seawater and SSA particle composition. By inducing a phytoplankton bloom, we are able to create dynamic ecosystem interactions between marine microorganisms, which serve to alter the organic mixtures present in seawater. Using this controlled approach, changes in seawater composition become reflected in the chemical composition of SSA particles 4 to 10 d after the peak in chlorophyll-a. This approach for producing and varying the chemical complexity of a dominant tropospheric aerosol provides the foundation for further investigations of the physical and chemical properties of realistic SSA particles under controlled conditions.


Assuntos
Aerossóis/química , Clorofila/química , Modelos Químicos , Água do Mar/química , Clorofila A , Laboratórios
3.
Sci Adv ; 9(37): eadg3715, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713488

RESUMO

Ice-nucleating particles (INPs) are rare atmospheric aerosols that initiate primary ice formation, but accurately simulating their concentrations and variability in large-scale climate models remains a challenge. Doing so requires both simulating major particle sources and parameterizing their ice nucleation (IN) efficiency. Validating and improving model predictions of INP concentrations requires measuring their concentrations delineated by particle type. We present a method to speciate INP concentrations into contributions from dust, sea spray aerosol (SSA), and bioaerosol. Field campaign data from Bodega Bay, California, showed that bioaerosols were the primary source of INPs between -12° and -20°C, while dust was a minor source and SSA had little impact. We found that recent parameterizations for dust and SSA accurately predicted ambient INP concentrations. However, the model did not skillfully simulate bioaerosol INPs, suggesting a need for further research to identify major factors controlling their emissions and INP efficiency for improved representation in models.

4.
J Neurosci Res ; 88(15): 3399-413, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20882568

RESUMO

Intracellular aggregation of tau is a pathological hallmark in Alzheimer's disease and other tauopathies. The mechanisms underlying tau aggregation and the role that these aggregates play in neuronal death have remained controversial. To study these issues, we established a cell culture model of tauopathy using a hexameric peptide with the sequence (306)VQIVYK(311) located within the third microtubule-binding repeat of tau, rendered cell-permeable by a tag of nine arginine residues (R(9)). This peptide (VQIVYK-R(9)), designated as T-peptide, self-assembles in vitro into paired helical filament-like aggregates. Primary neuronal cells treated with T-peptide die within 24 hr. Neurodegeneration correlates with the ability of the peptide to aggregate. Two peptides with mutations in the hexameric core, K-peptide (VQIVKK) and VV-peptide (VQVVVK), that are incapable of aggregating are not toxic, whereas two other mutant peptides, V-peptide (VQVVYK) and F-peptide (VQIVFK), which aggregate, are also neurotoxic. Two other peptides that aggregate in vitro, but are not derived from tau, are not neurotoxic suggesting sequence dependence. Although localizing to the nucleus, T-peptide induces aggregation of cellular proteins in the cytoplasm. These aggregates are not caused by disruption of endogenous tau localization, although endogenous tau is reduced in neurons exposed to T-peptide. Interestingly, nonneuronal cells are less sensitive to T-peptide toxicity, recapitulating in part the selective loss of neurons in tauopathies. Moreover, T-peptide treatment leads to mitochondrial dysfunction, a common feature of neurodegenerative disorders. The model system described here represents a convenient paradigm for studying the mechanisms underlying tau aggregation and neurotoxicity and for identifying compounds that can prevent these effects.


Assuntos
Neurônios/metabolismo , Neurônios/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Western Blotting , Células HEK293 , Humanos , Imuno-Histoquímica , Potencial da Membrana Mitocondrial/fisiologia , Mutação , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Peptídeos , Ratos , Proteínas tau/química , Proteínas tau/genética
5.
ACS Cent Sci ; 1(3): 124-31, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27162962

RESUMO

With the oceans covering 71% of the Earth, sea spray aerosol (SSA) particles profoundly impact climate through their ability to scatter solar radiation and serve as seeds for cloud formation. The climate properties can change when sea salt particles become mixed with insoluble organic material formed in ocean regions with phytoplankton blooms. Currently, the extent to which SSA chemical composition and climate properties are altered by biological processes in the ocean is uncertain. To better understand the factors controlling SSA composition, we carried out a mesocosm study in an isolated ocean-atmosphere facility containing 3,400 gallons of natural seawater. Over the course of the study, two successive phytoplankton blooms resulted in SSA with vastly different composition and properties. During the first bloom, aliphatic-rich organics were enhanced in submicron SSA and tracked the abundance of phytoplankton as indicated by chlorophyll-a concentrations. In contrast, the second bloom showed no enhancement of organic species in submicron particles. A concurrent increase in ice nucleating SSA particles was also observed only during the first bloom. Analysis of the temporal variability in the concentration of aliphatic-rich organic species, using a kinetic model, suggests that the observed enhancement in SSA organic content is set by a delicate balance between the rate of phytoplankton primary production of labile lipids and enzymatic induced degradation. This study establishes a mechanistic framework indicating that biological processes in the ocean and SSA chemical composition are coupled not simply by ocean chlorophyll-a concentrations, but are modulated by microbial degradation processes. This work provides unique insight into the biological, chemical, and physical processes that control SSA chemical composition, that when properly accounted for may explain the observed differences in SSA composition between field studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa