Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Hum Genet ; 107(5): 802-814, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33022222

RESUMO

The cause of autosomal-dominant retinitis pigmentosa (adRP), which leads to loss of vision and blindness, was investigated in families lacking a molecular diagnosis. A refined locus for adRP on Chr17q22 (RP17) was delineated through genotyping and genome sequencing, leading to the identification of structural variants (SVs) that segregate with disease. Eight different complex SVs were characterized in 22 adRP-affected families with >300 affected individuals. All RP17 SVs had breakpoints within a genomic region spanning YPEL2 to LINC01476. To investigate the mechanism of disease, we reprogrammed fibroblasts from affected individuals and controls into induced pluripotent stem cells (iPSCs) and differentiated them into photoreceptor precursor cells (PPCs) or retinal organoids (ROs). Hi-C was performed on ROs, and differential expression of regional genes and a retinal enhancer RNA at this locus was assessed by qPCR. The epigenetic landscape of the region, and Hi-C RO data, showed that YPEL2 sits within its own topologically associating domain (TAD), rich in enhancers with binding sites for retinal transcription factors. The Hi-C map of RP17 ROs revealed creation of a neo-TAD with ectopic contacts between GDPD1 and retinal enhancers, and modeling of all RP17 SVs was consistent with neo-TADs leading to ectopic retinal-specific enhancer-GDPD1 accessibility. qPCR confirmed increased expression of GDPD1 and increased expression of the retinal enhancer that enters the neo-TAD. Altered TAD structure resulting in increased retinal expression of GDPD1 is the likely convergent mechanism of disease, consistent with a dominant gain of function. Our study highlights the importance of SVs as a genomic mechanism in unsolved Mendelian diseases.


Assuntos
Cromossomos Humanos Par 17/química , Proteínas Nucleares/genética , Diester Fosfórico Hidrolases/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinose Pigmentar/genética , Fatores de Transcrição/genética , Adulto , Sequência de Aminoácidos , Diferenciação Celular , Reprogramação Celular , Criança , Mapeamento Cromossômico , Estudos de Coortes , Elementos Facilitadores Genéticos , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Genes Dominantes , Genoma Humano , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Proteínas Nucleares/metabolismo , Organoides/metabolismo , Organoides/patologia , Diester Fosfórico Hidrolases/metabolismo , Polimorfismo Genético , Cultura Primária de Células , Células Fotorreceptoras Retinianas Cones/patologia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
2.
Proc Natl Acad Sci U S A ; 117(18): 9922-9931, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312818

RESUMO

The outer segments (OS) of rod and cone photoreceptor cells are specialized sensory cilia that contain hundreds of opsin-loaded stacked membrane disks that enable phototransduction. The biogenesis of these disks is initiated at the OS base, but the driving force has been debated. Here, we studied the function of the protein encoded by the photoreceptor-specific gene C2orf71, which is mutated in inherited retinal dystrophy (RP54). We demonstrate that C2orf71/PCARE (photoreceptor cilium actin regulator) can interact with the Arp2/3 complex activator WASF3, and efficiently recruits it to the primary cilium. Ectopic coexpression of PCARE and WASF3 in ciliated cells results in the remarkable expansion of the ciliary tip. This process was disrupted by small interfering RNA (siRNA)-based down-regulation of an actin regulator, by pharmacological inhibition of actin polymerization, and by the expression of PCARE harboring a retinal dystrophy-associated missense mutation. Using human retinal organoids and mouse retina, we observed that a similar actin dynamics-driven process is operational at the base of the photoreceptor OS where the PCARE module and actin colocalize, but which is abrogated in Pcare-/- mice. The observation that several proteins involved in retinal ciliopathies are translocated to these expansions renders it a potential common denominator in the pathomechanisms of these hereditary disorders. Together, our work suggests that PCARE is an actin-associated protein that interacts with WASF3 to regulate the actin-driven expansion of the ciliary membrane at the initiation of new outer segment disk formation.


Assuntos
Cílios/genética , Distrofias de Cones e Bastonetes/genética , Proteínas do Olho/genética , Segmento Externo da Célula Bastonete/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Actinas/genética , Animais , Cílios/patologia , Distrofias de Cones e Bastonetes/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Segmento Externo da Célula Bastonete/patologia
3.
Cell Mol Life Sci ; 78(19-20): 6505-6532, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34420069

RESUMO

Inherited retinal diseases (IRDs) cause progressive loss of light-sensitive photoreceptors in the eye and can lead to blindness. Gene-based therapies for IRDs have shown remarkable progress in the past decade, but the vast majority of forms remain untreatable. In the era of personalised medicine, induced pluripotent stem cells (iPSCs) emerge as a valuable system for cell replacement and to model IRD because they retain the specific patient genome and can differentiate into any adult cell type. Three-dimensional (3D) iPSCs-derived retina-like tissue called retinal organoid contains all major retina-specific cell types: amacrine, bipolar, horizontal, retinal ganglion cells, Müller glia, as well as rod and cone photoreceptors. Here, we describe the main applications of retinal organoids and provide a comprehensive overview of the state-of-art analysis methods that apply to this model system. Finally, we will discuss the outlook for improvements that would bring the cellular model a step closer to become an established system in research and treatment development of IRDs.


Assuntos
Organoides/fisiologia , Retina/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Neuroglia/fisiologia , Doenças Retinianas/fisiopatologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia
4.
Hum Mol Genet ; 25(12): 2552-2563, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27106101

RESUMO

Leber congenital amaurosis (LCA) is a severe disorder resulting in visual impairment usually starting in the first year of life. The most frequent genetic cause of LCA is an intronic mutation in CEP290 (c.2991 + 1655A > G) that creates a cryptic splice donor site resulting in the insertion of a pseudoexon (exon X) into CEP290 mRNA. Previously, we showed that naked antisense oligonucleotides (AONs) effectively restored normal CEP290 splicing in patient-derived lymphoblastoid cells. We here explore the therapeutic potential of naked and adeno-associated virus (AAV)-packaged AONs in vitro and in vivo In both cases, AON delivery fully restored CEP290 pre-mRNA splicing, significantly increased CEP290 protein levels and rescued a ciliary phenotype present in patient-derived fibroblast cells. Moreover, administration of naked and AAV-packaged AONs to the retina of a humanized mutant Cep290 mouse model, carrying the intronic mutation, showed a statistically significant reduction of exon X-containing Cep290 transcripts, without compromising the retinal structure. Together, our data highlight the tremendous therapeutic prospective of AONs for the treatment of not only CEP290-associated LCA but potentially many other subtypes of retinal dystrophy caused by splicing mutations.


Assuntos
Antígenos de Neoplasias/genética , Cegueira/terapia , Terapia Genética , Amaurose Congênita de Leber/terapia , Proteínas de Neoplasias/genética , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Antígenos de Neoplasias/uso terapêutico , Cegueira/genética , Cegueira/patologia , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Dependovirus/genética , Modelos Animais de Doenças , Éxons/genética , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/patologia , Camundongos , Mutação , Proteínas de Neoplasias/uso terapêutico , Oligonucleotídeos Antissenso/genética , Fenótipo , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Retina/efeitos dos fármacos , Retina/patologia
5.
Prog Retin Eye Res ; 100: 101248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369182

RESUMO

Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.


Assuntos
Células-Tronco Pluripotentes , Doenças Retinianas , Animais , Humanos , Diferenciação Celular/fisiologia , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/patologia , Epitélio Pigmentado da Retina/patologia
6.
Cells ; 12(12)2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37371046

RESUMO

The photoreceptor outer segment is a highly specialized primary cilium that is essential for phototransduction and vision. Biallelic pathogenic variants in the cilia-associated gene CEP290 cause non-syndromic Leber congenital amaurosis 10 (LCA10) and syndromic diseases, where the retina is also affected. While RNA antisense oligonucleotides and gene editing are potential treatment options for the common deep intronic variant c.2991+1655A>G in CEP290, there is a need for variant-independent approaches that could be applied to a broader spectrum of ciliopathies. Here, we generated several distinct human models of CEP290-related retinal disease and investigated the effects of the flavonoid eupatilin as a potential treatment. Eupatilin improved cilium formation and length in CEP290 LCA10 patient-derived fibroblasts, in gene-edited CEP290 knockout (CEP290 KO) RPE1 cells, and in both CEP290 LCA10 and CEP290 KO iPSCs-derived retinal organoids. Furthermore, eupatilin reduced rhodopsin retention in the outer nuclear layer of CEP290 LCA10 retinal organoids. Eupatilin altered gene transcription in retinal organoids by modulating the expression of rhodopsin and by targeting cilia and synaptic plasticity pathways. This work sheds light on the mechanism of action of eupatilin and supports its potential as a variant-independent approach for CEP290-associated ciliopathies.


Assuntos
Cílios , Ciliopatias , Humanos , Cílios/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Rodopsina/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Flavonoides , Ciliopatias/tratamento farmacológico , Ciliopatias/genética , Ciliopatias/metabolismo
7.
Sci Rep ; 8(1): 9675, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946172

RESUMO

Mutations in C2orf71 are causative for autosomal recessive retinitis pigmentosa and occasionally cone-rod dystrophy. We have recently discovered that the protein encoded by this gene is important for modulation of the ciliary membrane through the recruitment of an actin assembly module, and have therefore renamed the gene to PCARE (photoreceptor cilium actin regulator). Here, we report on the identification of two copies of the c2orf71/pcare gene in zebrafish, pcare1 and pcare2. To study the role of the gene most similar to human PCARE, pcare1, we have generated a stable pcare1 mutant zebrafish model (designated pcare1 rmc100/rmc100 ) in which the coding sequence was disrupted using CRISPR/Cas9 technology. Retinas of both embryonic (5 dpf) and adult (6 mpf) pcare1 rmc100/rmc100 zebrafish display a clear disorganization of photoreceptor outer segments, resembling the phenotype observed in Pcare-/- mice. Optokinetic response and visual motor response measurements indicated visual impairment in pcare1 rmc100/rmc100 zebrafish larvae at 5 dpf. In addition, electroretinogram measurements showed decreased b-wave amplitudes in pcare1 rmc100/rmc100 zebrafish as compared to age- and strain-matched wild-type larvae, indicating a defect in the transretinal current. Altogether, our data show that lack of pcare1 causes a retinal phenotype in zebrafish and indicate that the function of the PCARE gene is conserved across species.


Assuntos
Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Eletrorretinografia , Imuno-Histoquímica , Mesotelina , Camundongos , Morfogênese/genética , Morfogênese/fisiologia , Estimulação Luminosa , Proteínas de Peixe-Zebra/genética
8.
PLoS One ; 13(7): e0200789, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30052645

RESUMO

Mutations in eyes shut homolog (EYS), a gene predominantly expressed in the photoreceptor cells of the retina, are among the most frequent causes of autosomal recessive (ar) retinitis pigmentosa (RP), a progressive retinal disorder. Due to the absence of EYS in several rodent species and its retina-specific expression, still little is known about the exact function of EYS and the pathogenic mechanism underlying EYS-associated RP. We characterized eys in zebrafish, by RT-PCR analysis on zebrafish eye-derived RNA, which led to the identification of a 8,715 nucleotide coding sequence that is divided over 46 exons. The transcript is predicted to encode a 2,905-aa protein that contains 39 EGF-like domains and five laminin A G-like domains, which overall shows 33% identity with human EYS. To study the function of EYS, we generated a stable eysrmc101/rmc101 mutant zebrafish model using CRISPR/Cas9 technology. The introduced lesion is predicted to result in premature termination of protein synthesis and lead to loss of Eys function. Immunohistochemistry on retinal sections revealed that Eys localizes at the region of the connecting cilium and that both rhodopsin and cone transducin are mislocalized in the absence of Eys. Electroretinogram recordings showed diminished b-wave amplitudes in eysrmc101/rmc101 zebrafish (5 dpf) compared to age- and strain-matched wild-type larvae. In addition, decreased locomotor activity in response to light stimuli was observed in eys mutant larvae. Altogether, our study shows that absence of Eys leads to a disorganized retinal architecture and causes visual dysfunction in zebrafish.


Assuntos
Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Visão Ocular , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia , Animais , Sistemas CRISPR-Cas , Análise Mutacional de DNA , Eletrorretinografia , Genes Recessivos , Genótipo , Humanos , Larva , Mutação , Domínios Proteicos , RNA/análise , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinose Pigmentar/genética , Rodopsina/metabolismo , Transducina/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa