Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Clin Invest ; 134(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227368

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models. Here, we pinpointed tauroursodeoxycholic acid (TUDCA) as an efficient therapeutic, improving the motor and neuropathological phenotype of SCA3 nematode and mouse models. Surprisingly, transcriptomic and functional in vivo data showed that TUDCA acts in neuronal tissue through the glucocorticoid receptor (GR), but independently of its canonical receptor, the farnesoid X receptor (FXR). TUDCA was predicted to bind to the GR, in a similar fashion to corticosteroid molecules. GR levels were decreased in disease-affected brain regions, likely due to increased protein degradation as a consequence of ATXN3 dysfunction being restored by TUDCA treatment. Analysis of a SCA3 clinical cohort showed intriguing correlations between the peripheral expression of GR and the predicted age at disease onset in presymptomatic subjects and FKBP5 expression with disease progression, suggesting this pathway as a potential source of biomarkers for future study. We have established a novel in vivo mechanism for the neuroprotective effects of TUDCA in SCA3 and propose this readily available drug for clinical trials in SCA3 patients.


Assuntos
Doença de Machado-Joseph , Doenças Neurodegenerativas , Ácido Tauroquenodesoxicólico , Camundongos , Adulto , Animais , Humanos , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Receptores de Glucocorticoides/genética , Camundongos Transgênicos
2.
Polym Chem ; 14(3): 303-317, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36760606

RESUMO

Polymer chemistry, composition and molar mass are factors that are known to affect cytotoxicity, however the influence of polymer architecture has not been investigated systematically. In this study the influence of the position of the cationic charges along the polymer chain on cytotoxicity was investigated while keeping constant the other polymer characteristics. Specifically, copolymers of various architectures, based on a cationic pH responsive monomer, 2-(dimethylamino)ethyl methacrylate (DMAEMA) and a non-ionic hydrophilic monomer, oligo(ethylene glycol)methyl ether methacrylate (OEGMA) were engineered and their toxicity towards a panel of cell lines investigated. Of the seven different polymer architectures examined, the block-like structures were less cytotoxic than statistical or gradient/tapered architectures. These findings will assist in developing future vectors for nucleic acid delivery.

3.
Cells ; 12(3)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36766724

RESUMO

Major depressive disorder (MDD) is a multidimensional psychiatric disorder that is estimated to affect around 350 million people worldwide. Generating valid and effective animal models of depression is critical and has been challenging for neuroscience researchers. For preclinical studies, models based on stress exposure, such as unpredictable chronic mild stress (uCMS), are amongst the most reliable and used, despite presenting concerns related to the standardization of protocols and time consumption for operators. To overcome these issues, we developed an automated system to expose rodents to a standard uCMS protocol. Here, we compared manual (uCMS) and automated (auCMS) stress-exposure protocols. The data shows that the impact of the uCMS exposure by both methods was similar in terms of behavioral (cognition, mood, and anxiety) and physiological (cell proliferation and endocrine variations) measurements. Given the advantages of time and standardization, this automated method represents a step forward in this field of preclinical research.


Assuntos
Transtorno Depressivo Maior , Ratos , Animais , Ansiedade , Cognição
4.
Noncoding RNA ; 8(4)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36005826

RESUMO

As research uncovers the underpinnings of cancer biology, new targeted therapies have been developed. Many of these therapies are small molecules, such as kinase inhibitors, that target specific proteins; however, only 1% of the genome encodes for proteins and only a subset of these proteins has 'druggable' active binding sites. In recent decades, RNA therapeutics have gained popularity due to their ability to affect targets that small molecules cannot. Additionally, they can be manufactured more rapidly and cost-effectively than small molecules or recombinant proteins. RNA therapeutics can be synthesised chemically and altered quickly, which can enable a more personalised approach to cancer treatment. Even though a wide range of RNA therapeutics are being developed for various indications in the oncology setting, none has reached the clinic to date. One of the main reasons for this is attributed to the lack of safe and effective delivery systems for this type of therapeutic. This review focuses on current strategies to overcome these challenges and enable the clinical utility of these novel therapeutic agents in the cancer clinic.

5.
Neuroscience ; 454: 94-104, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747562

RESUMO

Astrocytes are now known to play crucial roles in the central nervous system, supporting and closely interacting with neurons and therefore able to modulate brain function. Both human postmortem studies in brain samples from patients diagnosed with Major Depressive Disorder and from animal models of depression reported numerical and morphological astrocytic changes specifically in the hippocampus. In particular, these studies revealed significant reductions in glial cell density denoted by a decreased number of S100B-positive cells and a decrease in GFAP expression in several brain regions including the hippocampus. To reveal plastic astrocytic changes in the context of recurrent depression, we longitudinally assessed dynamic astrocytic alterations (gene expression, cell densities and morphologic variations) in the hippocampal dentate gyrus under repeated exposure to unpredictable chronic mild stress (uCMS) and upon treatment with two antidepressants, fluoxetine and imipramine. Both antidepressants decreased astrocytic complexity immediately after stress exposure. Moreover, we show that astrocytic alterations, particularly an increased number of S100B-positive cells, are observed after recurrent stress exposure. Interestingly, these alterations were prevented at the long-term by either fluoxetine or imipramine treatment.


Assuntos
Transtorno Depressivo Maior , Animais , Antidepressivos/farmacologia , Astrócitos , Giro Denteado , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Modelos Animais de Doenças , Hipocampo , Humanos
6.
JACC Case Rep ; 1(2): 188-191, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34316782

RESUMO

Transient cortical blindness (TCB) is an uncommon complication following coronary angiography. This report describes a case of TCB after coronary angiography in a patient admitted for acute myocardial infarction. The patient's vision recovered completely within 16 h, and cardiac magnetic resonance imaging performed 2 months later revealed no significant abnormalities. (Level of Difficulty: Beginner.).

7.
Brain Struct Funct ; 223(1): 415-428, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28852856

RESUMO

The continuous generation of new neurons and glial cells in the adult hippocampal dentate gyrus (DG) represents an important form of adult neuroplasticity, involved in normal brain function and behavior but also associated with the etiopathogenesis and treatment of psychiatric disorders. Despite the large number of studies addressing cell genesis along the septotemporal axis, data on the anatomical gradients of cytogenesis along the DG transverse axis is scarce, especially after exposure to stress. As such, in this study we characterized both basal proliferation and survival of adult-born neural cells along the transverse axis of the rat dorsal DG, and after stress exposure. In basal conditions, both proliferating cells and newborn neurons and glial cells were preferentially located at the subgranular zone and suprapyramidal blade. Exposure to chronic stress induced an overall decrease in the generation of adult-born neural cells and, more specifically, produced a regional-specific decrease in the survival of adult-born neurons at the suprapyramidal blade. No particular region-specific alterations were observed on surviving adult-born glial cells. This work reveals, for the first time, a distinct survival profile of adult-born neural cells, neurons and glial cells, among the transverse axis of the DG, in both basal and stress conditions. Our results unveil that adult-born neurons are preferentially located in the suprapyramidal blade and suggest a regional-specific impact of chronic stress in this blade with potential repercussions for its functional significance.


Assuntos
Giro Denteado/patologia , Memória de Curto Prazo/fisiologia , Neurogênese/fisiologia , Estresse Psicológico/patologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Bromodesoxiuridina/metabolismo , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Transtornos Cognitivos/etiologia , Corticosterona/sangue , Corticosterona/farmacologia , Corticosterona/uso terapêutico , Modelos Animais de Doenças , Antígeno Ki-67/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Neurônios/fisiologia , Fosfopiruvato Hidratase/metabolismo , RNA Mensageiro , Ratos , Reconhecimento Psicológico , Estresse Psicológico/sangue , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico
8.
Neuropsychopharmacology ; 40(2): 338-49, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25035085

RESUMO

Major depression is a highly prevalent, multidimensional disorder. Although several classes of antidepressants (ADs) are currently available, treatment efficacy is limited, and relapse rates are high; thus, there is a need to find better therapeutic strategies. Neuroplastic changes in brain regions such as the hippocampal dentate gyrus (DG) accompany depression and its amelioration with ADs. In this study, the unpredictable chronic mild stress (uCMS) rat model of depression was used to determine the molecular mediators of chronic stress and the targets of four ADs with different pharmacological profiles (fluoxetine, imipramine, tianeptine, and agomelatine) in the hippocampal DG. All ADs, except agomelatine, reversed the depression-like behavior and neuroplastic changes produced by uCMS. Chronic stress induced significant molecular changes that were generally reversed by fluoxetine, imipramine, and tianeptine. Fluoxetine primarily acted on neurons to reduce the expression of pro-inflammatory response genes and increased a set of genes involved in cell metabolism. Similarities were found between the molecular actions and targets of imipramine and tianeptine that activated pathways related to cellular protection. Agomelatine presented a unique profile, with pronounced effects on genes related to Rho-GTPase-related pathways in oligodendrocytes and neurons. These differential molecular signatures of ADs studied contribute to our understanding of the processes implicated in the onset and treatment of depression-like symptoms.


Assuntos
Antidepressivos/farmacologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Acetamidas/farmacologia , Animais , Doença Crônica , Giro Denteado/patologia , Transtorno Depressivo/patologia , Modelos Animais de Doenças , Fluoxetina/farmacologia , Expressão Gênica/efeitos dos fármacos , Imipramina/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Distribuição Aleatória , Ratos Wistar , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Tiazepinas/farmacologia , Incerteza
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa