Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Environ Sci Technol ; 57(44): 17051-17060, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37881814

RESUMO

Airport ice control products contributed to total phosphorus (TP) loadings in a study of surface water runoff at a medium-sized airport from 2015 to 2021. Eleven airport ice control products had TP concentrations from 1-807 mg L-1 in liquid formulas, while solid pavement deicer had a TP concentration of 805 mg kg-1. Product application data, formula TP concentrations, and surface water sampling results were used to estimate TP concentration and loading contributions from these ice control products to receiving streams. Airport ice control products were found to contribute to TP in 84% of the water samples collected at downstream sites during deicing events, and TP concentrations at those sites exceeded aquatic life benchmarks in 70% of samples collected during deicing. A receiving stream 6 km downstream had TP attributed to airport ice control sources in 78% of the samples. TP loadings at an upstream site and the receiving stream site were greatest during the largest runoff events as is typical in urban runoff, but this pattern was not always followed at airport outfall sites due to the influence of TP in deicer products. Products analyzed in this study are used at airports across the United States and abroad, and findings suggest that airport deicers could represent a previously unrecognized source of phosphorus to adjacent waterways.


Assuntos
Gelo , Poluentes Químicos da Água , Aeroportos , Fósforo , Água , Monitoramento Ambiental , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 55(1): 373-384, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33283500

RESUMO

The spatial distribution, concentration, particle size, and polymer compositions of microplastics in Lake Michigan and Lake Erie sediment were investigated. Fibers/lines were the most abundant of the five particle types characterized. Microplastic particles were observed in all samples with mean concentrations for particles greater than 0.355 mm of 65.2 p kg-1 in Lake Michigan samples (n = 20) and 431 p kg-1 in Lake Erie samples (n = 12). Additional analysis of particles with size 0.1250-0.3549 mm in Lake Erie resulted in a mean concentration of 631 p kg-1. The majority of polymers in Lake Michigan samples were poly(ethylene terephthalate) (PET), high-density polyethylene (HDPE), and semisynthetic cellulose (S.S. Cellulose), and in Lake Erie samples were S.S. Cellulose, polypropylene (PP), and poly(vinyl chloride) (PVC). Polymer density estimates indicated that 85 and 74% of observed microplastic particles have a density greater than 1.1 g cm-3 for Lake Michigan and Lake Erie, respectively. The current study provided a multidimensional dataset on the spatial distribution of microplastics in benthic sediment from Lake Michigan and Lake Erie and valuable information for assessment of the fate of microplastics in the Great Lakes.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Michigan , Plásticos , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 55(20): 13770-13782, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34591452

RESUMO

Relations between spectral absorbance and fluorescence properties of water and human-associated and fecal indicator bacteria were developed for facilitating field sensor applications to estimate wastewater contamination in waterways. Leaking wastewater conveyance infrastructure commonly contaminates receiving waters. Methods to quantify such contamination can be time consuming, expensive, and often nonspecific. Human-associated bacteria are wastewater specific but require discrete sampling and laboratory analyses, introducing latency. Human sewage has fluorescence and absorbance properties different than those of natural waters. To assist real-time field sensor development, this study investigated optical properties for use as surrogates for human-associated bacteria to estimate wastewater prevalence in environmental waters. Three spatial scales were studied: Eight watershed-scale sites, five subwatershed-scale sites, and 213 storm sewers and open channels within three small watersheds (small-scale sites) were sampled (996 total samples) for optical properties, human-associated bacteria, fecal indicator bacteria, and, for selected samples, human viruses. Regression analysis indicated that bacteria concentrations could be estimated by optical properties used in existing field sensors for watershed and subwatershed scales. Human virus occurrence increased with modeled human-associated bacteria concentration, providing confidence in these regressions as surrogates for wastewater contamination. Adequate regressions were not found for small-scale sites to reliably estimate bacteria concentrations likely due to inconsistent local sanitary sewer inputs.


Assuntos
Águas Residuárias , Microbiologia da Água , Bactérias , Monitoramento Ambiental , Fezes , Humanos , Esgotos , Água
4.
Environ Sci Technol ; 53(21): 12227-12237, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31618011

RESUMO

Microplastic contamination was studied along a freshwater continuum from inland streams to the Milwaukee River estuary to Lake Michigan and vertically from the water surface, water subsurface, and sediment. Microplastics were detected in all 96 water samples and 9 sediment samples collected. Results indicated a gradient of polymer presence with depth: low-density particles decreased from the water surface to the subsurface to sediment, and high-density particles had the opposite result. Polymer identification results indicated that water surface and subsurface samples were dominated by low-density polypropylene particles, and sediment samples were dominated by more dense polyethylene terephthalate particles. Of the five particle-type categories (fragments, films, foams, pellets/beads, and fibers/lines), fibers/lines were the most common particle-type and were present in every water and sediment sample collected. Fibers represented 45% of all particles in water samples and were distributed vertically throughout the water column regardless of density. Sediment samples were dominated by black foams (66%, identified as styrene-butadiene rubber) and to a lesser extent fibers/lines (29%) with approximately 89% of all of the sediment particles coming from polymers with densities greater than 1.1 g cm-3. Results demonstrated that polymer density influenced partitioning between the water surface and subsurface and the underlying surficial sediment and the common practice of sampling only the water surface can result in substantial bias, especially in estuarine, harbor, and lake locations where water surface concentrations tend to overestimate mean water column concentrations.


Assuntos
Lagos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Michigan , Plásticos , Rios , Água
5.
PLoS Med ; 15(7): e1002614, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30040843

RESUMO

BACKGROUND: Past studies have demonstrated an association between waterborne disease and heavy precipitation, and climate change is predicted to increase the frequency of these types of intense storm events in some parts of the United States. In this study, we examined the linkage between rainfall and sewage contamination of urban waterways and quantified the amount of sewage released from a major urban area under different hydrologic conditions to identify conditions that increase human risk of exposure to sewage. METHODS AND FINDINGS: Rain events and low-flow periods were intensively sampled to quantify loads of sewage based on two genetic markers for human-associated indicator bacteria (human Bacteroides and Lachnospiraceae). Samples were collected at a Lake Michigan estuary and at three river locations immediately upstream. Concentrations of indicators were analyzed using quantitative polymerase chain reaction (qPCR), and loads were calculated from streamflow data collected at each location. Human-associated indicators were found during periods of low flow, and loads increased one to two orders of magnitude during rain events from stormwater discharges contaminated with sewage. Combined sewer overflow (CSO) events increased concentrations and loads of human-associated indicators an order of magnitude greater than heavy rainfall events without CSO influence. Human-associated indicator yields (load per km2 of land per day) were related to the degree of urbanization in each watershed. Contamination in surface waters were at levels above the acceptable risk for recreational use. Further, evidence of sewage exfiltration from pipes threatens drinking water distribution systems and source water. While this study clearly demonstrates widespread sewage contamination released from urban areas, a limitation of this study is understanding human exposure and illness rates, which are dependent on multiple factors, and gaps in our knowledge of the ultimate health outcomes. CONCLUSIONS: With the prediction of more intense rain events in certain regions due to climate change, sewer overflows and contamination from failing sewer infrastructure may increase, resulting in increases in waterborne pathogen burdens in waterways. These findings quantify hazards in exposure pathways from rain events and illustrate the additional stress that climate change may have on urban water systems. This information could be used to prioritize efforts to invest in failing sewer infrastructure and create appropriate goals to address the health concerns posed by sewage contamination from urban areas.


Assuntos
Bactérias/isolamento & purificação , Estuários , Fezes/microbiologia , Inundações , Lagos/microbiologia , Chuva , Esgotos/microbiologia , Microbiologia da Água , Poluição da Água , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Monitoramento Ambiental/métodos , Humanos , Reação em Cadeia da Polimerase , Medição de Risco , Fatores de Risco , Esgotos/efeitos adversos , Fatores de Tempo , Saúde da População Urbana , Poluição da Água/efeitos adversos
6.
Environ Sci Technol ; 52(20): 11500-11509, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30192524

RESUMO

Fecal contamination from sewage and agricultural runoff is a pervasive problem in Great Lakes watersheds. Most work examining fecal pollution loads relies on discrete samples of fecal indicators and modeling land use. In this study, we made empirical measurements of human and ruminant-associated fecal indicator bacteria and combined these with hydrological measurements in eight watersheds ranging from predominantly forested to highly urbanized. Flow composited river samples were collected over low-flow ( n = 89) and rainfall or snowmelt runoff events ( n = 130). Approximately 90% of samples had evidence of human fecal pollution, with highest loads from urban watersheds. Ruminant indicators were found in ∼60-100% of runoff-event samples in agricultural watersheds, with concentrations and loads related to cattle density. Rain depth, season, agricultural tile drainage, and human or cattle density explained variability in daily flux of human or ruminant indicators. Mapping host-associated indicator loads to watershed discharge points sheds light on the type, level, and possible health risk from fecal pollution entering the Great Lakes and can inform total maximum daily load implementation and other management practices to target specific fecal pollution sources.


Assuntos
Hidrologia , Lagos , Animais , Bovinos , Monitoramento Ambiental , Fezes , Humanos , Rios
7.
Environ Sci Technol ; 52(21): 12162-12171, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30991470

RESUMO

Hydrologic, seasonal, and spatial variability of sewage contamination was studied at six locations within a watershed upstream from water reclamation facility (WRF) effluent to define relative loadings of sewage from different portions of the watershed. Fecal pollution from human sources was spatially quantified by measuring two human-associated indicator bacteria (HIB) and eight human-specific viruses (HSV) at six stream locations in the Menomonee River watershed in Milwaukee, Wisconsin from April 2009 to March 2011. A custom, automated water sampler, which included HSV filtration, was deployed at each location and provided unattended, flow-weighted, large-volume (30-913 L) sampling. In addition, wastewater influent samples were composited over discrete 7 day periods from the two Milwaukee WRFs. Of the 8 HSV, only 3 were detected, present in up to 38% of the 228 stream samples, while at least 1 HSV was detected in all WRF influent samples. HIB occurred more often with significantly higher concentrations than the HSV in stream and WRF influent samples ( p < 0.05). HSV yield calculations showed a loss from upstream to the most-downstream sub-watershed of the Menomonee River, and in contrast, a positive HIB yield from this same sub-watershed emphasizes the complexity in fate and transport properties between HSV and HIB. This study demonstrates the utility of analyzing multiple HSV and HIB to provide a weight-of-evidence approach for assessment of fecal contamination at the watershed level, provides an assessment of relative loadings for prioritizing areas within a watershed, and demonstrates how loadings of HSV and HIB can be inconsistent, inferring potential differences in fate and transport between the two indicators of human fecal presence.


Assuntos
Vírus , Água , Bactérias , Monitoramento Ambiental , Fezes , Humanos , Wisconsin
8.
Environ Sci Technol ; 52(23): 13972-13985, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30460851

RESUMO

Safe drinking water at the point-of-use (tapwater, TW) is a United States public health priority. Multiple lines of evidence were used to evaluate potential human health concerns of 482 organics and 19 inorganics in TW from 13 (7 public supply, 6 private well self-supply) home and 12 (public supply) workplace locations in 11 states. Only uranium (61.9 µg L-1, private well) exceeded a National Primary Drinking Water Regulation maximum contaminant level (MCL: 30 µg L-1). Lead was detected in 23 samples (MCL goal: zero). Seventy-five organics were detected at least once, with median detections of 5 and 17 compounds in self-supply and public supply samples, respectively (corresponding maxima: 12 and 29). Disinfection byproducts predominated in public supply samples, comprising 21% of all detected and 6 of the 10 most frequently detected. Chemicals designed to be bioactive (26 pesticides, 10 pharmaceuticals) comprised 48% of detected organics. Site-specific cumulative exposure-activity ratios (∑EAR) were calculated for the 36 detected organics with ToxCast data. Because these detections are fractional indicators of a largely uncharacterized contaminant space, ∑EAR in excess of 0.001 and 0.01 in 74 and 26% of public supply samples, respectively, provide an argument for prioritized assessment of cumulative effects to vulnerable populations from trace-level TW exposures.


Assuntos
Água Potável , Praguicidas , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Estados Unidos , Abastecimento de Água , Local de Trabalho
9.
Environ Sci Technol ; 51(15): 8713-8724, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671818

RESUMO

Current environmental monitoring approaches focus primarily on chemical occurrence. However, based on concentration alone, it can be difficult to identify which compounds may be of toxicological concern and should be prioritized for further monitoring, in-depth testing, or management. This can be problematic because toxicological characterization is lacking for many emerging contaminants. New sources of high-throughput screening (HTS) data, such as the ToxCast database, which contains information for over 9000 compounds screened through up to 1100 bioassays, are now available. Integrated analysis of chemical occurrence data with HTS data offers new opportunities to prioritize chemicals, sites, or biological effects for further investigation based on concentrations detected in the environment linked to relative potencies in pathway-based bioassays. As a case study, chemical occurrence data from a 2012 study in the Great Lakes Basin along with the ToxCast effects database were used to calculate exposure-activity ratios (EARs) as a prioritization tool. Technical considerations of data processing and use of the ToxCast database are presented and discussed. EAR prioritization identified multiple sites, biological pathways, and chemicals that warrant further investigation. Prioritized bioactivities from the EAR analysis were linked to discrete adverse outcome pathways to identify potential adverse outcomes and biomarkers for use in subsequent monitoring efforts.


Assuntos
Bioensaio , Monitoramento Ambiental , Ensaios de Triagem em Larga Escala , Testes de Toxicidade , Biomarcadores , Great Lakes Region , Humanos , Lagos
10.
Environ Sci Technol ; 50(19): 10377-10385, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27627676

RESUMO

Plastic debris is a growing contaminant of concern in freshwater environments, yet sources, transport, and fate remain unclear. This study characterized the quantity and morphology of floating micro- and macroplastics in 29 Great Lakes tributaries in six states under different land covers, wastewater effluent contributions, population densities, and hydrologic conditions. Tributaries were sampled three or four times each using a 333 µm mesh neuston net. Plastic particles were sorted by size, counted, and categorized as fibers/lines, pellets/beads, foams, films, and fragments. Plastics were found in all 107 samples, with a maximum concentration of 32 particles/m3 and a median of 1.9 particles/m3. Ninety-eight percent of sampled plastic particles were less than 4.75 mm in diameter and therefore considered microplastics. Fragments, films, foams, and pellets/beads were positively correlated with urban-related watershed attributes and were found at greater concentrations during runoff-event conditions. Fibers, the most frequently detected particle type, were not associated with urban-related watershed attributes, wastewater effluent contribution, or hydrologic condition. Results from this study add to the body of information currently available on microplastics in different environmental compartments, including unique contributions to quantify their occurrence and variability in rivers with a wide variety of different land-use characteristics while highlighting differences between surface samples from rivers compared with lakes.


Assuntos
Hidrologia , Lagos , Monitoramento Ambiental , Plásticos , Rios , Poluentes Químicos da Água
11.
Environ Sci Technol ; 50(5): 2442-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26825142

RESUMO

Statistical and mechanistic models are popular tools for predicting the levels of indicator bacteria at recreational beaches. Researchers tend to use one class of model or the other, and it is difficult to generalize statements about their relative performance due to differences in how the models are developed, tested, and used. We describe a cooperative modeling approach for freshwater beaches impacted by point sources in which insights derived from mechanistic modeling were used to further improve the statistical models and vice versa. The statistical models provided a basis for assessing the mechanistic models which were further improved using probability distributions to generate high-resolution time series data at the source, long-term "tracer" transport modeling based on observed electrical conductivity, better assimilation of meteorological data, and the use of unstructured-grids to better resolve nearshore features. This approach resulted in improved models of comparable performance for both classes including a parsimonious statistical model suitable for real-time predictions based on an easily measurable environmental variable (turbidity). The modeling approach outlined here can be used at other sites impacted by point sources and has the potential to improve water quality predictions resulting in more accurate estimates of beach closures.


Assuntos
Praias , Escherichia coli/fisiologia , Lagos/microbiologia , Modelos Estatísticos , Modelos Teóricos , Microbiologia da Água , Geografia , Michigan
12.
Environ Sci Technol ; 50(2): 987-95, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26720156

RESUMO

Waterborne pathogens were measured at three beaches in Lake Michigan, environmental factors for predicting pathogen concentrations were identified, and the risk of swimmer infection and illness was estimated. Waterborne pathogens were detected in 96% of samples collected at three Lake Michigan beaches in summer, 2010. Samples were quantified for 22 pathogens in four microbial categories (human viruses, bovine viruses, protozoa, and pathogenic bacteria). All beaches had detections of human and bovine viruses and pathogenic bacteria indicating influence of multiple contamination sources at these beaches. Occurrence ranged from 40 to 87% for human viruses, 65-87% for pathogenic bacteria, and 13-35% for bovine viruses. Enterovirus, adenovirus A, Salmonella spp., Campylobacter jejuni, bovine polyomavirus, and bovine rotavirus A were present most frequently. Variables selected in multiple regression models used to explore environmental factors that influence pathogens included wave direction, cloud cover, currents, and water temperature. Quantitative Microbial Risk Assessment was done for C. jejuni, Salmonella spp., and enteroviruses to estimate risk of infection and illness. Median infection risks for one-time swimming events were approximately 2 × 10(-5), 8 × 10(-6), and 3 × 10(-7) [corrected] for C. jejuni, Salmonella spp., and enteroviruses, respectively. Results highlight the importance of investigating multiple pathogens within multiple categories to avoid underestimating the prevalence and risk of waterborne pathogens.


Assuntos
Bactérias/isolamento & purificação , Lagos/microbiologia , Lagos/virologia , Vírus/isolamento & purificação , Animais , Bactérias/patogenicidade , Praias , Campylobacter jejuni/isolamento & purificação , Campylobacter jejuni/patogenicidade , Bovinos , Enterovirus/isolamento & purificação , Enterovirus/patogenicidade , Monitoramento Ambiental , Great Lakes Region , Humanos , Medição de Risco/métodos , Salmonella/isolamento & purificação , Salmonella/patogenicidade , Estações do Ano , Vírus/patogenicidade , Microbiologia da Água
13.
Sci Total Environ ; 930: 172505, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38636851

RESUMO

Human sewage contaminates waterways, delivering excess nutrients, pathogens, chemicals, and other toxic contaminants. Contaminants and various sewage indicators are measured to monitor and assess water quality, but these analytes vary in their representation of sewage contamination and the inferences about water quality they support. We measured the occurrence and concentration of multiple microbiological (n = 21) and chemical (n = 106) markers at two urban stream locations in Milwaukee, Wisconsin, USA over two years. Five-day composite water samples (n = 98) were collected biweekly, and sewage influent samples (n = 25) were collected monthly at a Milwaukee, WI water reclamation facility. We found the vast majority of markers were not sensitive enough to detect sewage contamination. To compare analytes for monitoring applications, five consistently detected human sewage indicators were used to evaluate temporal patterns of sewage contamination, including microbiological (pepper mild mottle virus, human Bacteroides, human Lachnospiraceae) and chemical (acetaminophen, metformin) markers. The proportion of human sewage in each stream was estimated using the mean influent concentration from the water reclamation facility and the mean concentration of all stream samples for each sewage indicator marker. Estimates of instream sewage pollution varied by marker, differing by up to two orders of magnitude, but four of the five sewage markers characterized Underwood Creek (mean proportions of human sewage ranged 0.0025 % - 0.075 %) as less polluted than Menomonee River (proportions ranged 0.013 % - 0.14 %) by an order of magnitude more. Chemical markers correlated with each other and yielded higher estimates of sewage pollution than microbial markers, which exhibited greater temporal variability. Transport, attenuation, and degradation processes can influence chemical and microbial markers differently and cause variation in human sewage estimates. Given the range of potential human and ecological health effects of human sewage contamination, robust characterization of sewage contamination that uses multiple lines of evidence supports monitoring and research applications.


Assuntos
Monitoramento Ambiental , Rios , Esgotos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Humanos , Rios/microbiologia , Rios/química , Rios/virologia , Wisconsin , Poluentes Químicos da Água/análise , Preparações Farmacêuticas/análise , Bactérias/isolamento & purificação , Qualidade da Água , Microbiologia da Água , Vírus/isolamento & purificação
14.
Environ Toxicol Chem ; 43(7): 1509-1523, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38860662

RESUMO

The potential for polycyclic aromatic hydrocarbon (PAH)-related effects in benthic organisms is commonly estimated from organic carbon-normalized sediment concentrations based on equilibrium partitioning (EqP). Although this approach is useful for screening purposes, it may overestimate PAH bioavailability by orders of magnitude in some sediments, leading to inflated exposure estimates and potentially unnecessary remediation costs. Recently, passive samplers have been shown to provide an accurate assessment of the freely dissolved concentrations of PAHs, and thus their bioavailability and possible biological effects, in sediment porewater and overlying surface water. We used polyethylene passive sampling devices (PEDs) to measure freely dissolved porewater and water column PAH concentrations at 55 Great Lakes (USA/Canada) tributary locations. The potential for PAH-related biological effects using PED concentrations were estimated with multiple approaches by applying EqP, water quality guidelines, and pathway-based biological activity based on in vitro bioassay results from ToxCast. Results based on the PED-based exposure estimates were compared with EqP-derived exposure estimates for concurrently collected sediment samples. The results indicate a potential overestimation of bioavailable PAH concentrations by up to 960-fold using the EqP-based method compared with measurements using PEDs. Even so, PED-based exposure estimates indicate a high potential for PAH-related biological effects at 14 locations. Our findings provide an updated, weight-of-evidence-based site prioritization to help guide possible future monitoring and mitigation efforts. Environ Toxicol Chem 2024;43:1509-1523. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Monitoramento Ambiental/métodos , Lagos/química , Animais
15.
J Environ Manage ; 114: 470-5, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23186726

RESUMO

At public beaches, it is now common to mitigate the impact of water-borne pathogens by posting a swimmer's advisory when the concentration of fecal indicator bacteria (FIB) exceeds an action threshold. Since culturing the bacteria delays public notification when dangerous conditions exist, regression models are sometimes used to predict the FIB concentration based on readily-available environmental measurements. It is hard to know which environmental parameters are relevant to predicting FIB concentration, and the parameters are usually correlated, which can hurt the predictive power of a regression model. Here the method of partial least squares (PLS) is introduced to automate the regression modeling process. Model selection is reduced to the process of setting a tuning parameter to control the decision threshold that separates predicted exceedances of the standard from predicted non-exceedances. The method is validated by application to four Great Lakes beaches during the summer of 2010. Performance of the PLS models compares favorably to that of the existing state-of-the-art regression models at these four sites.


Assuntos
Praias/normas , Escherichia coli/isolamento & purificação , Microbiologia da Água , Great Lakes Region , Análise dos Mínimos Quadrados
16.
PLoS One ; 18(6): e0286571, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267346

RESUMO

In an investigation of pharmaceutical contamination in the Lac du Flambeau Chain of Lakes (hereafter referred to as "the Chain"), few contaminants were detected; only eight pharmaceuticals and one pesticide were identified among the 110 pharmaceuticals and other organic contaminants monitored in surface water samples. This study, conducted in cooperation with the Lac du Flambeau Tribe's Water Resource Program, investigated these organic contaminants and potential biological effects in channels connecting lakes throughout the Chain, including the Moss Lake Outlet site, adjacent to the wastewater treatment plant lagoon. Of the 6 sites monitored and 24 samples analyzed, sample concentrations and contaminant detection frequencies were greatest at the Moss Lake Outlet site; however, the concentrations and detection frequencies of this study were comparable to other pharmaceutical investigations in basins with similar characteristics. Because established water-quality benchmarks do not exist for the pharmaceuticals detected in this study, alternative screening-level water-quality benchmarks, developed using two U.S. Environmental Protection Agency toxicological resources (ToxCast database and ECOTOX knowledgebase), were used to estimate potential biological effects associated with the observed contaminant concentrations. Two contaminants (caffeine and thiabendazole) exceeded the prioritization threshold according to ToxCast alternative benchmarks, and four contaminants (acetaminophen, atrazine, caffeine, and carbamazepine) exceeded the prioritization threshold according to ECOTOX alternative benchmarks. Atrazine, an herbicide, was the most frequently detected contaminant (79% of samples), and it exhibited the strongest potential for biological effects due to its high estimated potency. Insufficient toxicological information within ToxCast and ECOTOX for gabapentin and methocarbamol (which had the two greatest concentrations in this study) precluded alternative benchmark development. This data gap presents unknown potential environmental impacts. Future research examining the biological effects elicited by these two contaminants as well as the others detected in this study would further elucidate the ecological relevance of the water chemistry results generated though this investigation.


Assuntos
Atrazina , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Lagos , Cafeína , Poluentes Químicos da Água/análise , Água , Preparações Farmacêuticas
17.
Environ Toxicol Chem ; 42(12): 2506-2518, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37642300

RESUMO

Assessing the ecological risk of contaminants in the field typically involves consideration of a complex mixture of compounds which may or may not be detected via instrumental analyses. Further, there are insufficient data to predict the potential biological effects of many detected compounds, leading to their being characterized as contaminants of emerging concern (CECs). Over the past several years, advances in chemistry, toxicology, and bioinformatics have resulted in a variety of concepts and tools that can enhance the pragmatic assessment of the ecological risk of CECs. The present Focus article describes a 10+- year multiagency effort supported through the U.S. Great Lakes Restoration Initiative to assess the occurrence and implications of CECs in the North American Great Lakes. State-of-the-science methods and models were used to evaluate more than 700 sites in about approximately 200 tributaries across lakes Ontario, Erie, Huron, Michigan, and Superior, sometimes on multiple occasions. Studies featured measurement of up to 500 different target analytes in different environmental matrices, coupled with evaluation of biological effects in resident species, animals from in situ and laboratory exposures, and in vitro systems. Experimental taxa included birds, fish, and a variety of invertebrates, and measured endpoints ranged from molecular to apical responses. Data were integrated and evaluated using a diversity of curated knowledgebases and models with the goal of producing actionable insights for risk assessors and managers charged with evaluating and mitigating the effects of CECs in the Great Lakes. This overview is based on research and data captured in approximately about 90 peer-reviewed journal articles and reports, including approximately about 30 appearing in a virtual issue comprised of highlighted papers published in Environmental Toxicology and Chemistry or Integrated Environmental Assessment and Management. Environ Toxicol Chem 2023;42:2506-2518. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Humanos , Animais , Monitoramento Ambiental/métodos , Ecossistema , Lagos/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Michigan , Etoposídeo , Great Lakes Region
18.
Integr Environ Assess Manag ; 19(5): 1276-1296, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36524447

RESUMO

Watersheds are subjected to diverse anthropogenic inputs, exposing aquatic biota to a wide range of chemicals. Detection of multiple, different chemicals can challenge natural resource managers who often have to determine where to allocate potentially limited resources. Here, we describe a weight-of-evidence framework for retrospectively prioritizing aquatic contaminants. To demonstrate framework utility, we used data from 96-h caged fish studies to prioritize chemicals detected in the Milwaukee Estuary (WI, USA; 2017-2018). Across study years, 77/178 targeted chemicals were detected. Chemicals were assigned prioritization scores based on spatial and temporal detection frequency, environmental distribution, environmental fate, ecotoxicological potential, and effect prediction. Chemicals were sorted into priority bins based on the intersection of prioritization score and data availability. Data-limited chemicals represented those that did not have sufficient data to adequately evaluate ecotoxicological potential or environmental fate. Seven compounds (fluoranthene, benzo[a]pyrene, pyrene, atrazine, metolachlor, phenanthrene, and DEET) were identified as high or medium priority and data sufficient and flagged as candidates for further effects-based monitoring studies. Twenty-one compounds were identified as high or medium priority and data limited and flagged as candidates for further ecotoxicological research. Fifteen chemicals were flagged as the lowest priority in the watershed. One of these chemicals (2-methylnaphthalene) displayed no data limitations and was flagged as a definitively low-priority chemical. The remaining chemicals displayed some data limitations and were considered lower-priority compounds (contingent on further ecotoxicological and environmental fate assessments). The remaining 34 compounds were flagged as low or medium priority. Altogether, this prioritization provided a screening-level (non-definitive) assessment that could be used to focus further resource management and risk assessment activities in the Milwaukee Estuary. Furthermore, by providing detailed methodology and a practical example with real experimental data, we demonstrated that the proposed framework represents a transparent and adaptable approach for prioritizing contaminants in freshwater environments. Integr Environ Assess Manag 2023;19:1276-1296. © 2022 SETAC.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Estudos Retrospectivos , Estuários , Ecotoxicologia , Medição de Risco/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
19.
Environ Toxicol Chem ; 42(2): 340-366, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36165576

RESUMO

To help meet the objectives of the Great Lakes Restoration Initiative with regard to increasing knowledge about toxic substances, 223 pesticides and pesticide transformation products were monitored in 15 Great Lakes tributaries using polar organic chemical integrative samplers. A screening-level assessment of their potential for biological effects was conducted by computing toxicity quotients (TQs) for chemicals with available US Environmental Protection Agency (USEPA) Aquatic Life Benchmark values. In addition, exposure activity ratios (EAR) were calculated using information from the USEPA ToxCast database. Between 16 and 81 chemicals were detected per site, with 97 unique compounds detected overall, for which 64 could be assessed using TQs or EARs. Ten chemicals exceeded TQ or EAR levels of concern at two or more sites. Chemicals exceeding thresholds included seven herbicides (2,4-dichlorophenoxyacetic acid, diuron, metolachlor, acetochlor, atrazine, simazine, and sulfentrazone), a transformation product (deisopropylatrazine), and two insecticides (fipronil and imidacloprid). Watersheds draining agricultural and urban areas had more detections and higher concentrations of pesticides compared with other land uses. Chemical mixtures analysis for ToxCast assays associated with common modes of action defined by gene targets and adverse outcome pathways (AOP) indicated potential activity on biological pathways related to a range of cellular processes, including xenobiotic metabolism, extracellular signaling, endocrine function, and protection against oxidative stress. Use of gene ontology databases and the AOP knowledgebase within the R-package ToxMixtures highlighted the utility of ToxCast data for identifying and evaluating potential biological effects and adverse outcomes of chemicals and mixtures. Results have provided a list of high-priority chemicals for future monitoring and potential biological effects warranting further evaluation in laboratory and field environments. Environ Toxicol Chem 2023;42:340-366. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Herbicidas , Praguicidas , Poluentes Químicos da Água , Praguicidas/toxicidade , Praguicidas/análise , Monitoramento Ambiental/métodos , Lagos/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Herbicidas/análise
20.
PLoS One ; 18(6): e0286851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37289789

RESUMO

Human sewage contamination of waterways is a major issue in the United States and throughout the world. Models were developed for estimation of two human-associated fecal-indicator and three general fecal-indicator bacteria (HIB and FIB) using in situ optical field-sensor data for estimating concentrations and loads of HIB and FIB and the extent of sewage contamination in the Menomonee River in Milwaukee, Wisconsin. Three commercially available optical sensor platforms were installed into an unfiltered custom-designed flow-through system along with a refrigerated automatic sampler at the Menomonee River sampling location. Ten-minute optical sensor measurements were made from November 2017 to December 2018 along with the collection of 153 flow-weighted discrete water samples (samples) for HIB, FIB, dissolved organic carbon (DOC), and optical properties of water. Of those 153 samples, 119 samples were from event-runoff periods, and 34 were collected during low-flow periods. Of the 119 event-runoff samples, 43 samples were from event-runoff combined sewer overflow (CSO) influenced periods (event-CSO periods). Models included optical sensor measurements as explanatory variables with a seasonal variable as an interaction term. In some cases, separate models for event-CSO periods and non CSO-periods generally improved model performance, as compared to using all the data combined for estimates of FIB and HIB. Therefore, the CSO and non-CSO models were used in final estimations for CSO and non-CSO time periods, respectively. Estimated continuous concentrations for all bacteria markers varied over six orders of magnitude during the study period. The greatest concentrations, loads, and proportion of sewage contamination occurred during event-runoff and event-CSO periods. Comparison to water quality standards and microbial risk assessment benchmarks indicated that estimated bacteria levels exceeded recreational water quality criteria between 34 and 96% of the entire monitoring period, highlighting the benefits of high-frequency monitoring compared to traditional grab sample collection. The application of optical sensors for estimation of HIB and FIB markers provided a thorough assessment of bacterial presence and human health risk in the Menomonee River.


Assuntos
Rios , Esgotos , Humanos , Rios/microbiologia , Esgotos/microbiologia , Wisconsin , Monitoramento Ambiental , Bactérias , Fezes/microbiologia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa