Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Molecules ; 28(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36677957

RESUMO

Searching for new copper compounds which may be useful as antitumor drugs, a series of new [Cu(L-dipeptide)(batho)] (batho:4,7-diphenyl-1,10-phenanthroline, L-dipeptide: Gly-Val, Gly-Phe, Ala-Gly, Ala-Ala, Ala-Phe, Phe-Ala, Phe-Val and Phe-Phe) complexes were synthesized and characterized. To interpret the experimental IR spectra, [Cu(ala-gly)(batho)] was modelled in the gas phase using DFT at the B3LYP/LANL2DZ level of theory and the calculated vibrational frequencies were analyzed. Solid-state characterization is in agreement with pentacoordinate complexes of the general formula [Cu(L-dipeptide)(batho)]·x solvent, similar to other [Cu(L-dipeptide)(diimine)] complexes. In solution, the major species are heteroleptic, as in the solid state. The mode of binding to the DNA was evaluated by different techniques, to understand the role of the diimine and the dipeptide. To this end, studies were also performed with complexes [CuCl2(diimine)], [Cu(L-dipeptide)(diimine)] and free diimines, with phenanthroline, neocuproine and 3,4,7,8-tetramethyl-phenanthroline. The cytotoxicity of the complexes was determined on human cancer cell lines MDA-MB-231, MCF-7 (breast, the first triple negative), and A549 (lung epithelial) and non-tumor cell lines MRC-5 (lung) and MCF-10A (breast). [Cu(L-dipeptide)(batho)] complexes are highly cytotoxic as compared to cisplatin and [Cu(L-dipeptide)(phenanthroline)] complexes, being potential candidates to study their in vivo activity in the treatments of aggressive tumors for which there is no curative pharmacological treatment.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Cobre/química , Fenantrolinas/farmacologia , Fenantrolinas/química , Complexos de Coordenação/química , Antineoplásicos/química , DNA/química , Dipeptídeos/farmacologia , Dipeptídeos/química
2.
J Biol Inorg Chem ; 27(4-5): 431-441, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35524804

RESUMO

New compounds to fight cancer are needed due to cancer high incidence and lack of curative treatments for several classes of this disease. Metal-based coordination compounds offer a variety of molecules that can turn into drugs. Among them, coordination copper complexes are emerging as an attractive class of compounds for cancer treatment. A series of [Cu(L-dipeptide)(tmp)] (tmp = 3,4,7,8-tetramethyl-1,10-phenanthroline) complexes were synthesized and characterized in the solid state, including the determination of the crystalline structure of [Cu(Gly-Gly)(tmp)]·3.5 H2O and [Cu2Cl4(tmp)2]. The complexes were studied in solution, where the major species are also ternary ones. The lipophilicity of the complexes was determined and the binding to the DNA was evaluated, suggesting that it occurs in the DNA's major groove. The cytotoxicity of the complexes was evaluated on different cancer cell lines: human metastatic breast adenocarcinoma MDA-MB-231 (triple negative, ATCC: HTB-26), MCF-7 (ATCC: HTB-22), SK-BR-3 (ATCC: HTB-30), human lung epithelial carcinoma A549 (ATCC: CCL-185), cisplatin resistant-human ovarian carcinoma A2780cis (SIGMA) and nontumoral cell lines: MRC-5 (lung; ATCC: CCL-171) and MCF-10A (breast, ATCC: CRL-10317). [Cu(L-dipeptide)(tmp)] complexes are highly cytotoxic as compared to [Cu(L-dipeptide)(phenanthroline)] and cisplatin. Therefore, [Cu(L-dipeptide)(tmp)] complexes are promising candidates to have their in vivo activity further studied toward new treatments for triple negative breast cancer and other aggressive tumors for which there is no curative pharmacological treatment to the date.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Complexos de Coordenação/química , Cobre/química , Cobre/farmacologia , DNA/química , Dipeptídeos/química , Humanos , Células MCF-7 , Fenantrolinas/química
3.
Biochim Biophys Acta Gen Subj ; 1862(4): 855-865, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29339081

RESUMO

BACKGROUND: Golgi Reassembly and Stacking Proteins (GRASPs) are widely spread among eukaryotic cells (except plants) and are considered as key components in both the stacking of the Golgi cisternae and its lateral connection. Furthermore, GRASPs were also proved essential in the unconventional secretion pathway of several proteins, even though the mechanism remains obscure. It was previously observed that the GRASP homologue in Cryptococcus neoformans has a molten globule-like behavior in solution. METHODS: We used circular dichroism, synchrotron radiation circular dichroism and steady-state as well as time-resolved fluorescence. RESULTS: We report the disorder-to-order transition propensities for a native molten globule-like protein in the presence of different mimetics of cell conditions. Changes in the dielectric constant (such as those experienced close to the membrane surface) seem to be the major factor in inducing multiple disorder-to-order transitions in GRASP, which shows very distinct behavior when in conditions that mimic the vicinity of the membrane surface as compared to those found when free in solution. Other folding factors such as molecular crowding, counter ions, pH and phosphorylation exhibit lower or no effect on GRASP secondary structure and/or stability. GENERAL SIGNIFICANCE: To the best of our knowledge, this is the first study focusing on understanding the disorder-to-order transitions of a molten globule structure without the need of any mild denaturing condition. A model is also introduced aiming at describing how the cell could manipulate the GRASP sensitivity to changes in the dielectric constant during different cell-cycle periods.


Assuntos
Proteínas Fúngicas/química , Proteínas de Membrana/química , Conformação Proteica , Dobramento de Proteína , Álcoois/química , Álcoois/metabolismo , Dicroísmo Circular , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Membrana/metabolismo , Metais/química , Metais/metabolismo , Modelos Moleculares , Desnaturação Proteica , Estrutura Secundária de Proteína , Termodinâmica , Água/química , Água/metabolismo
4.
Biochim Biophys Acta Biomembr ; 1859(6): 1133-1143, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28336314

RESUMO

Pulmonary surfactant exhibits phase coexistence over a wide range of surface pressure and temperature. Less is known about the effect of temperature on pulmonary surfactant models. Given the lack of studies on this issue, we used electron paramagnetic resonance (EPR) and nonlinear least-squares (NLLS) simulations to investigate the thermotropic phase behavior of the matrix that mimics the pulmonary surfactant lipid complex, i.e., the lipid mixture composed of dipalmitoyl phosphatidylcholine (DPPC), palmitoyl-oleoyl phosphatidylcholine (POPC) and palmitoyl-oleoyl phosphatidylglycerol (POPG). Irrespective of pH, the EPR spectra recorded from 5°C to 25°C in the DPPC/POPC/POPG (4:3:1) model membrane contain two spectral components corresponding to lipids in gel-like and fluid-like phases, indicating a coexistence of two domains in that range. The temperature dependence of the distribution of spin labels between the domains yielded nonlinear van't Hoff plots. The thermodynamic parameters evaluated were markedly different for DPPC and for the ternary DPPC/POPC/POPG (4:3:1) membranes and exhibited a dependence on chemical environment. While enthalpy and entropy changes for DPPC were always positive and presented a quadratic behavior with temperature, those of the ternary mixture were linearly dependent on temperature and changed from negative to positive values. Despite that, enthalpy-entropy compensation takes place in the two systems. The thermotropic process associated with the coexistence of the two domains is entropically-driven in DPPC and either entropically- or enthalpically-driven in the pulmonary surfactant membrane depending on the pH, ionic strength and temperature. The significance of these results to the structure and function of the pulmonary surfactant lipid matrix is discussed.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Modelos Químicos , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Surfactantes Pulmonares/química , Concentração de Íons de Hidrogênio , Membranas Artificiais , Concentração Osmolar , Transição de Fase , Propriedades de Superfície , Temperatura , Termodinâmica
5.
Protein Expr Purif ; 118: 39-48, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26432949

RESUMO

Galectin-4 (Gal4), a tandem-repeat type galectin, is expressed in healthy epithelium of the gastrointestinal tract. Altered levels of Gal4 expression are associated with different types of cancer, suggesting its usage as a diagnostic marker as well as target for drug development. The functional data available for this class of proteins suggest that the wide spectrum of cellular activities reported for Gal4 relies on distinct glycan specificity and structural characteristics of its two carbohydrate recognition domains. In the present work, two independent constructs for recombinant expression of the C-terminal domain of human galectin-4 (hGal4-CRD2) were developed. His6-tagged and untagged recombinant proteins were overexpressed in Escherichia coli, and purified by affinity chromatography followed by gel filtration. Correct folding and activity of hGal4-CRD2 were assessed by circular dichroism and fluorescence spectroscopies, respectively. Diffraction quality crystals were obtained by vapor-diffusion sitting drop setup and the crystal structure of CRD2 was solved by molecular replacement techniques at 1.78 Å resolution. Our work describes the development of important experimental tools that will allow further studies in order to correlate structure and binding properties of hGal4-CRD2 and human galectin-4 functional activities.


Assuntos
Carboidratos/química , Galectina 4/química , Galectina 4/isolamento & purificação , Sítios de Ligação , Biofísica , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Galectina 4/genética , Galectina 4/metabolismo , Expressão Gênica , Humanos , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
6.
Biochim Biophys Acta ; 1844(6): 1094-103, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24637331

RESUMO

In eukaryotes, there are still steps of the vitamin B1 biosynthetic pathway not completely understood. In Arabidopsis thaliana, THI1 protein has been associated with the synthesis of the thiazole ring, a finding supported by the identification of a thiamine pyrophosphate (TPP)-like compound in its structure. Here, we investigated THI1 and its mutant THI1(A140V), responsible for the thiamin auxotrophy in a A. thaliana mutant line, aiming to clarify the impact of this mutation in the stability and activity of THI1. Recently, the THI1 orthologue (THI4) was revealed to be responsible for the donation of the sulfur atom from a cysteine residue to the thiazole ring in the thiamine intermediate. In this context, we carried out a cysteine quantification in THI1 and THI1(A140V) using electron spin resonance (ESR). These data showed that THI1(A140V) contains more sulfur-containing cysteines than THI1, indicating that the function as a sulfur donor is conserved, but the rate of donation reaction is somehow affected. Also, the bound compounds were isolated from both proteins and are present in different amounts in each protein. Unfolding studies presented differences in melting temperatures and also in the concentration of guanidine at which half of the protein unfolds, thus showing that THI1(A140V) has its conformational stability affected by the mutation. Hence, despite keeping its function in the early steps during the synthesis of TPP precursor, our studies have shown a decrease in the THI1(A140V) stability, which might be slowing down the biological activity of the mutant, and thus contributing to thiamin auxotrophy.


Assuntos
Alanina/química , Proteínas de Arabidopsis/química , Arabidopsis/química , Mutação , Tiamina/biossíntese , Valina/química , Alanina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína/química , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Estabilidade Proteica , Desdobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo , Valina/metabolismo
7.
Int J Biol Macromol ; 270(Pt 1): 132294, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735602

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are molecules with two or more fused aromatic rings that occur naturally in the environment due to incomplete combustion of organic substances. However, the increased demand for fossil fuels in recent years has increased anthropogenic activity, contributing to the environmental concentration of PAHs. The enzyme chlorocatechol 1,2-dioxygenase from Pseudomonas putida (Pp 1,2-CCD) is responsible for the breakdown of the aromatic ring of catechol, making it a potential player in bioremediation strategies. Pp 1,2-CCD can tolerate a broader range of substrates, including halogenated compounds, than other dioxygenases. Here, we report the construction of a chimera protein able to form biomolecular condensates with potential application in bioremediation. The chimera protein was built by conjugating Pp 1,2-CCD to low complex domains (LCDs) derived from the DEAD-box protein Dhh1. We showed that the chimera could undergo liquid-liquid phase separation (LLPS), forming a protein-rich liquid droplet under different conditions (variable protein and PEG8000 concentrations and pH values), in which the protein maintained its structure and main biophysical properties. The condensates were active against 4-chlorocatechol, showing that the chimera droplets preserved the enzymatic activity of the native protein. Therefore, it constitutes a prototype of a microreactor with potential use in bioremediation.


Assuntos
Biodegradação Ambiental , Dioxigenases , Hidrocarbonetos Policíclicos Aromáticos , Dioxigenases/metabolismo , Dioxigenases/química , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pseudomonas putida/enzimologia , Catecóis/metabolismo , Catecóis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
8.
Biochim Biophys Acta Proteins Proteom ; 1872(5): 141029, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917877

RESUMO

The Golgi apparatus is a critical organelle in protein sorting and lipid metabolism. Characterized by its stacked, flattened cisternal structure, the Golgi exhibits distinct polarity with its cis- and trans-faces orchestrating various protein maturation and transport processes. At the heart of its structural integrity and organisation are the Golgi Matrix Proteins (GMPs), predominantly comprising Golgins and GRASPs. These proteins contribute to this organelle's unique stacked and polarized structure and ensure the precise localization of Golgi-resident enzymes, which is crucial for accurate protein processing. Despite over a century of research since its discovery, the Golgi architecture's intricate mechanisms still need to be fully understood. Here, we discuss that GMPs across different Eukaryotic lineages present a significant tendency to form biomolecular condensates. Moreover, we validated experimentally that members of the GRASP family also exhibit a strong tendency. Our findings offer a new perspective on the possible roles of protein disorder and condensation of GMPs in the Golgi organisation.


Assuntos
Complexo de Golgi , Proteínas da Matriz do Complexo de Golgi , Proteínas da Matriz do Complexo de Golgi/metabolismo , Complexo de Golgi/metabolismo , Humanos , Animais , Transporte Proteico , Separação de Fases
9.
J Biomol Struct Dyn ; : 1-12, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361284

RESUMO

The Golgi Reassembly and Stacking Proteins (GRASPs) are engaged in various functions within the cell, both in unconventional secretion mechanisms and structuring and organizing the Golgi apparatus. Understanding their specific role in each situation still requires more structural and functional data at the molecular level. GRASP55 is one of the GRASP members in mammals, anchored to the membrane via the myristoylation of a Gly residue at its N-terminus. Therefore, co-translational modifications, such as myristoylation, are fundamental when considering a strategy to obtain detailed information on the interactions between GRASP55 and membranes. Despite its functional relevance, the N-terminal myristoylation has been underappreciated in the studies reported to date, compromising the previously proposed models for GRASP-membrane interactions. Here, we investigated the synergy between the presence of the membrane and the formation of oligomeric structures of myristoylated GRASP55, using a series of biophysical techniques to perform the structural characterization of the lipidated GRASP55 and its interaction with biological lipid model membranes. Our data fulfill an unexplored gap: the adequate evaluation of the presence of lipidations and lipid membranes on the structure-function dyad of GRASPs.Communicated by Ramaswamy H. Sarma.

10.
Protein Sci ; 33(7): e5085, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923199

RESUMO

Eukaryotic cells have developed intricate mechanisms for biomolecule transport, particularly in stressful conditions. This interdisciplinary study delves into unconventional protein secretion (UPS) pathways activated during starvation, facilitating the export of proteins bypassing most of the components of the classical secretory machinery. Specifically, we focus on the underexplored mechanisms of the GRASP's role in UPS, particularly in biogenesis and cargo recruitment for the vesicular-like compartment for UPS. Our results show that liquid-liquid phase separation (LLPS) plays a key role in the coacervation of Grh1, the GRASP yeast homologue, under starvation-like conditions. This association seems a precursor to the Compartment for Unconventional Protein Secretion (CUPS) biogenesis. Grh1's self-association is regulated by electrostatic, hydrophobic, and hydrogen-bonding interactions. Importantly, our study demonstrates that phase-separated states of Grh1 can recruit UPS cargo under starvation-like situations. Additionally, we explore how the coacervate liquid-to-solid transition could impact cells' ability to return to normal post-stress states. Our findings offer insights into intracellular protein dynamics and cell adaptive responses to stress.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Transporte Proteico , Separação de Fases
11.
J Inorg Biochem ; 260: 112700, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39163715

RESUMO

The success of a classic inorganic coordination compound, Cisplatin, cis-[Pt(NH3)2Cl2], as the first anticancer metallodrug started a field of research dedicated to discovering coordination compounds with antitumor activity, encompassing various metals. Among these, copper complexes have emerged as interesting candidates to develop drugs to treat cancer. In this work, mixed ligand complexes of Cu(II) with diimines (phenanthroline or 4-methylphenanthroline) and 3-(4-hydroxyphenyl)propanoate, phenylcarboxylate or phenylacetate were synthesized. They were characterized in the solid state, including a new crystal structure of [Cu2(3-(4-hydroxyphenyl)propanoate)3(phenanthroline)2]Cl·H2O. The obtained complexes presented a variety of stoichiometries. In solution, complexes were partially dissociated in the corresponding Cu-diimine complex. The complexes bound to the DNA by partial intercalation and groove binding, as assessed by Circular Dichroism, relative viscosity change and UV-Vis titration. The cytotoxicity of the complexes was determined in vitro on MDA-MB-231, MCF-7 (human metastatic breast adenocarcinomas, the first triple negative), MCF-10A (breast nontumoral), A549 (human lung epithelial carcinoma), and MRC-5 (human nontumoral lung epithelial cells), finding an activity higher than that of Cisplatin, although with less selectivity.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cobre , Fenantrolinas , Humanos , Cobre/química , Fenantrolinas/química , Fenantrolinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Linhagem Celular Tumoral , Ligantes , DNA/química , DNA/metabolismo , Células A549 , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células MCF-7
12.
Eur Biophys J ; 42(8): 655-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23754625

RESUMO

Dioxygenases are nonheme iron enzymes that biodegrade recalcitrant compounds, such as catechol and derivatives, released into the environment by modern industry. Intradiol dioxygenases have attracted much attention due to the interest in their use for bioremediation, which has demanded efforts towards understanding their action mechanism and also how to control it. The role of unexpected amphipatic molecules, observed in crystal structures of intradiol dioxygenases, during catalysis has been poorly explored. We report results obtained with the intradiol enzyme chlorocatechol 1,2-dioxygenase (1,2-CCD) from Pseudomonas putida subjected to delipidation. The delipidated enzyme is more stable and shows more cooperative thermal denaturation. The kinetics changes from Michaelis-Menten to a cooperative scheme, indicating that conformational changes propagate between monomers in the absence of amphipatic molecules. Furthermore, these molecules inhibit catalysis, yielding lower v(max) values. To the best of our knowledge, this is the first report concerning the effects of amphipatic molecules on 1,2-CCD function.


Assuntos
Dioxigenases/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Pseudomonas putida/enzimologia , Catecóis/metabolismo , Dioxigenases/química , Cinética , Metabolismo dos Lipídeos
13.
Pharmaceutics ; 15(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37242587

RESUMO

Coordination complexes may act as anticancer agents. Among others, the formation of the complex may facilitate the ligand uptake by the cell. Searching for new copper compounds with cytotoxic activity, the complex Cu-dipicolinate was studied as a neutral scaffold to form ternary complexes with diimines. A series of [Cu(dipicolinate)(diimine)] complexes (where diimine: Phenanthroline, phen, 5-NO2-phenanthroline, 4-methyl-phenanthroline, neocuproine, 3,4,7,8-tetramethyl-phenanthroline, tmp, bathophenanthroline, bipyridine, dimethyl-bipyridine, as well as the ligand 2,2-dipyridil-amine, bam) were synthesized and characterized both in the solid state, including a new crystal structure of [Cu2(dipicolinate)2(tmp)2]·7H2O. Their chemistry in aqueous solution was explored by UV/vis spectroscopy, conductivity, cyclic voltammetry, and electron paramagnetic resonance studies. Their DNA binding was analyzed by electronic spectroscopy (determining Kb values), circular dichroism, and viscosity methods. The cytotoxicity of the complexes was assessed on human cancer cell lines MDA-MB-231, MCF-7 (breast, the first triple negative), A549 (lung epithelial) and A2780cis (ovarian, Cisplatin-resistant), and non-tumor cell lines MRC-5 (lung) and MCF-10A (breast). The major species are ternary, in solution and solid state. Complexes are highly cytotoxic as compared to Cisplatin. Complexes containing bam and phen are interesting candidates to study their in vivo activity in triple-negative breast cancer treatment.

14.
J Biol Chem ; 286(50): 43026-38, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22006920

RESUMO

Two bifunctional enzymes exhibiting combined xylanase and laccase activities were designed, constructed, and characterized by biochemical and biophysical methods. The Bacillus subtilis cotA and xynA genes were used as templates for gene fusion, and the xynA coding sequence was inserted into a surface loop of the cotA. A second chimera was built replacing the wild-type xynA gene by a thermostable variant (xynAG3) previously obtained by in vitro molecular evolution. Kinetic measurements demonstrated that the pH and temperature optima of the catalytic domains in the chimeras were altered by less than 0.5 pH units and 5 °C, respectively, when compared with the parental enzymes. In contrast, the catalytic efficiency (k(cat)/K(m)) of the laccase activity in both chimeras was 2-fold higher than for the parental laccase. Molecular dynamics simulations of the CotA-XynA chimera indicated that the two domains are in close contact, which was confirmed by the low resolution structure obtained by small angle x-ray scattering. The simulation also indicates that the formation of the inter-domain interface causes the dislocation of the loop comprising residues Leu-558 to Lys-573 in the laccase domain, resulting in a more accessible active site and exposing the type I Cu(2+) ion to the solvent. These structural changes are consistent with the results from UV-visible electronic and EPR spectroscopy experiments of the type I copper between the native and chimeric enzymes and are likely to contribute to the observed increase in catalytic turnover number.


Assuntos
Lacase/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/metabolismo , Xilosidases/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Cinética , Lacase/genética , Simulação de Dinâmica Molecular , Proteínas Recombinantes de Fusão/genética , Xilosidases/genética
15.
Biochim Biophys Acta ; 1808(1): 55-64, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20713019

RESUMO

Primaquine (PQ) is a potent therapeutic agent used in the treatment of malaria and its mechanism of action still lacks a more detailed understanding at a molecular level. In this context, we used differential scanning calorimetry (DSC), pressure perturbation calorimetry (PPC), and electron spin resonance (ESR) to investigate the effects of PQ on the lipid phase transition, acyl chain dynamics, and on volumetric properties of lipid model membranes. DSC thermograms revealed that PQ stabilizes the fluid phase of the lipid model membranes and interacts mainly with the lipid headgroups. This result was revealed by the great effect on the pretransition of phosphatidylcholines and the destabilization of the inverted hexagonal phase of a phosphatidylethanolamine bilayer. Spin probes located at different positions along the lipid chain were used to monitor different membrane regions. ESR results indicated that PQ is effective in changing the acyl chain ordering and dynamics of the whole chain of dimyristoylphosphatidylcholine (DMPC) phospholipid in the rippled gel phase. The combined ESR and PPC results revealed that the slight DMPC volume changes at the main phase transition induced by the presence of PQ is probably due to a less dense lipid gel phase. At physiological pH, the cationic amphiphilic PQ strongly interacts with the lipid headgroup region of the bilayers, causing considerable disorganization in the hydrophobic core. These results shed light on the molecular mechanism of primaquine-lipid interaction, which may be useful in the understanding of the complex mechanism of action and/or the adverse effects of this antimalarial drug.


Assuntos
Antimaláricos/farmacologia , Bicamadas Lipídicas/química , Lipídeos/química , Membranas Artificiais , Primaquina/farmacologia , Calorimetria/métodos , Varredura Diferencial de Calorimetria/métodos , Cátions , Dimiristoilfosfatidilcolina/química , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Fosfolipídeos/química , Temperatura
16.
FEBS Lett ; 596(8): 973-990, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35099811

RESUMO

The classical secretory pathway is the key membrane-based delivery system in eukaryotic cells. Several families of proteins involved in the secretory pathway, with functionalities going from cargo sorting receptors to the maintenance and dynamics of secretory organelles, share soluble globular domains predicted to mediate protein-protein interactions. One of them is the 'Golgi Dynamics' (GOLD) domain, named after its strong association with the Golgi apparatus. There are many GOLD-containing protein families, such as the transmembrane emp24 domain-containing proteins (TMED/p24 family), animal SEC14-like proteins, human Golgi resident protein ACBD3, a splice variant of TICAM2 called TRAM with GOLD domain, and FYCO1. Here, we critically review the state-of-the-art knowledge of the structures and functions of the main representatives of GOLD-containing proteins in vertebrates. We provide the first unified description of the GOLD domain structure across different families since the first high-resolution structure was determined. With a brand-new update on the definition of the GOLD domain, we also discuss how its tertiary structure fits the ß-sandwich-like fold map and give exciting new directions for forthcoming studies.


Assuntos
Fenômenos Fisiológicos Celulares , Complexo de Golgi , Animais , Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Domínios Proteicos , Transporte Proteico/fisiologia
17.
Int J Biol Macromol ; 199: 42-50, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34942208

RESUMO

The participation of amyloids in neurodegenerative diseases and functional processes has triggered the quest for methods allowing their direct detection in vivo. Despite the plethora of data, those methods are still lacking. The autofluorescence from the extended ß-sheets of amyloids is here used to track fibrillation of S. cerevisiae Golgi Reassembly and Stacking Protein (Grh1). Grh1 has been implicated in starvation-triggered unconventional protein secretion (UPS), and here its participation also in heat shock response (HSR) is suggested. Fluorescence Lifetime Imaging (FLIM) is used to detect fibril autofluorescence in cells (E. coli and yeast) under stress (starvation and higher temperature). The formation of Grh1 large complexes under stress is further supported by size exclusion chromatography and ultracentrifugation. The data show for the first time in vivo detection of amyloids without the use of extrinsic probes as well as bring new perspectives on the participation of Grh1 in UPS and HSR.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Amiloide/química , Escherichia coli/metabolismo , Conformação Proteica em Folha beta , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
18.
Int J Biol Macromol ; 194: 264-275, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861272

RESUMO

The Golgi complex is an essential organelle of the eukaryotic exocytic pathway. A subfamily of Golgi matrix proteins, called GRASPs, is central in stress-induced unconventional secretion, Golgi dynamics during mitosis/apoptosis, and Golgi ribbon formation. The Golgi ribbon is vertebrate-specific and correlates with the appearance of two GRASP paralogues and two Golgins (GM130/Golgin45), which form specific GRASP-Golgin pairs. The molecular details of their appearance only in Metazoans are unknown. Moreover, despite new functionalities supported by GRASP paralogy, little is known about their structural and evolutionary differences. Here, we used ancestor sequence reconstruction and biophysical/biochemical approaches to assess the evolution of GRASPs structure/dynamics, fibrillation, and how they started anchoring their Golgin partners. Our data showed that a GRASP ancestor anchored Golgins before gorasp gene duplication in Metazoans. After gene duplication, variations within the GRASP binding pocket determined which paralogue would recruit which Golgin. These interactions are responsible for their specific Golgi location and Golgi ribbon appearance. We also suggest that GRASPs have a long-standing capacity to form supramolecular structures, affecting their participation in stress-induced processes.


Assuntos
Complexo de Golgi/fisiologia , Proteínas da Matriz do Complexo de Golgi/metabolismo , Estresse Fisiológico , Sequência de Aminoácidos , Proteínas da Matriz do Complexo de Golgi/química , Proteínas da Matriz do Complexo de Golgi/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Filogenia , Ligação Proteica , Conformação Proteica , Transporte Proteico , Relação Estrutura-Atividade , Termodinâmica
19.
Int J Biol Macromol ; 221: 891-899, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36100001

RESUMO

Due to its severe burden and geographic distribution, Chagas disease (CD) has a significant social and economic impact on low-income countries. Benznidazole and nifurtimox are currently the only drugs available for CD. These are prodrugs activated by reducing the nitro group, a reaction catalyzed by nitroreductase type I enzyme from Trypanosoma cruzi (TcNTR), with no homolog in the human host. The three-dimensional structure of TcNTR, and the molecular and chemical bases of the selective activation of nitro drugs, are still unknown. To understand the role of TcNTR in the basic parasite biology, investigate its potential as a drug target, and contribute to the fight against neglected tropical diseases, a combined approach using multiple biophysical and biochemical methods together with in silico studies was employed in the characterization of TcNTR. For the first time, the interaction of TcNTR with membranes was demonstrated, with a preference for those containing cardiolipin, a unique dimeric phospholipid that exists almost exclusively in the inner mitochondrial membrane in eukaryotic cells. Prediction of TcNTR's 3D structure suggests that a 23-residue long insertion (199 to 222), absent in the homologous bacterial protein and identified as conserved in protozoan sequences, mediates enzyme specificity, and is involved in protein-membrane interaction.


Assuntos
Doença de Chagas , Nitroimidazóis , Pró-Fármacos , Tripanossomicidas , Trypanosoma cruzi , Humanos , Nitroimidazóis/metabolismo , Nitroimidazóis/uso terapêutico , Nifurtimox/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Nitrorredutases/química , Pró-Fármacos/uso terapêutico , Tripanossomicidas/química
20.
Biochimie ; 192: 72-82, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34634369

RESUMO

The transmembrane emp24 domain-containing (TMED) proteins, also called p24 proteins, are members of a family of sorting receptors present in all representatives of the Eukarya and abundantly present in all subcompartments of the early secretory pathway, namely the endoplasmic reticulum (ER), the Golgi, and the intermediate compartment. Although essential during the bidirectional transport between the ER and the Golgi, there is still a lack of information regarding the TMED's structure across different subfamilies. Besides, although the presence of a TMED homo-oligomerization was suggested previously based on crystallographic contacts observed for the isolated Golgi Dynamics (GOLD) domain, no further analyses of its presence in solution were done. Here, we describe the first high-resolution structure of a TMED1 GOLD representative and its biophysical characterization in solution. The crystal structure showed a dimer formation that is also present in solution in a salt-dependent manner, suggesting that the GOLD domain can form homodimers in solution even in the absence of the TMED1 coiled-coil region. A molecular dynamics description of the dimer stabilization, with a phylogenetic analysis of the residues important for the oligomerization and a model for the orientation towards the lipid membrane, are also presented.


Assuntos
Complexo de Golgi/química , Simulação de Acoplamento Molecular , Filogenia , Proteínas de Transporte Vesicular/química , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Domínios Proteicos , Termodinâmica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa