Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 555(7695): 210-215, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29489753

RESUMO

Human gut microbiome composition is shaped by multiple factors but the relative contribution of host genetics remains elusive. Here we examine genotype and microbiome data from 1,046 healthy individuals with several distinct ancestral origins who share a relatively common environment, and demonstrate that the gut microbiome is not significantly associated with genetic ancestry, and that host genetics have a minor role in determining microbiome composition. We show that, by contrast, there are significant similarities in the compositions of the microbiomes of genetically unrelated individuals who share a household, and that over 20% of the inter-person microbiome variability is associated with factors related to diet, drugs and anthropometric measurements. We further demonstrate that microbiome data significantly improve the prediction accuracy for many human traits, such as glucose and obesity measures, compared to models that use only host genetic and environmental data. These results suggest that microbiome alterations aimed at improving clinical outcomes may be carried out across diverse genetic backgrounds.


Assuntos
Dieta/estatística & dados numéricos , Meio Ambiente , Características da Família , Microbioma Gastrointestinal/genética , Estilo de Vida , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Interação Gene-Ambiente , Glucose/metabolismo , Voluntários Saudáveis , Hereditariedade/genética , Humanos , Israel , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , RNA Bacteriano/análise , RNA Bacteriano/genética , RNA Ribossômico 16S/análise , Reprodutibilidade dos Testes , Estudos em Gêmeos como Assunto , Gêmeos/genética , Adulto Jovem
2.
Bioinformatics ; 38(4): 1162-1164, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34791031

RESUMO

SUMMARY: Taxonomic analysis of microbial communities is well supported at the level of species and strains. However, species can contain significant phenotypic diversity and strains are rarely widely shared across global populations. Stratifying the diversity between species and strains can identify 'subspecies', which are a useful intermediary. High-throughput identification and profiling of subspecies is not yet supported in the microbiome field. Here, we use an operational definition of subspecies based on single nucleotide variant (SNV) patterns within species to identify and profile subspecies in metagenomes, along with their distinctive SNVs and genes. We incorporate this method into metaSNV v2, which extends existing SNV-calling software to support further SNV interpretation for population genetics. These new features support microbiome analyses to link SNV profiles with host phenotype or environment and niche-specificity. We demonstrate subspecies identification in marine and fecal metagenomes. In the latter, we analyze 70 species in 7524 adult and infant subjects, supporting a common subspecies population structure in the human gut microbiome and illustrating some limits in subspecies calling. AVAILABILITY AND IMPLEMENTATION: Source code, documentation, tutorials and test data are available at https://github.com/metasnv-tool/metaSNV and https://metasnv.embl.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Metagenoma , Software , Fenótipo
3.
Nature ; 551(7682): 585-589, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29143823

RESUMO

A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (TH17) cells, which can also contribute to hypertension. Induction of TH17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating TH17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased TH17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus/efeitos dos fármacos , Lactobacillus/isolamento & purificação , Cloreto de Sódio/farmacologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Animais , Autoimunidade/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/microbiologia , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/terapia , Fezes/microbiologia , Humanos , Hipertensão/induzido quimicamente , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Intestinos/citologia , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Lactobacillus/imunologia , Ativação Linfocitária/efeitos dos fármacos , Contagem de Linfócitos , Masculino , Camundongos , Projetos Piloto , Cloreto de Sódio/administração & dosagem , Simbiose , Células Th17/citologia , Triptofano/metabolismo
4.
Mol Syst Biol ; 13(12): 960, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242367

RESUMO

Population genomics of prokaryotes has been studied in depth in only a small number of primarily pathogenic bacteria, as genome sequences of isolates of diverse origin are lacking for most species. Here, we conducted a large-scale survey of population structure in prevalent human gut microbial species, sampled from their natural environment, with a culture-independent metagenomic approach. We examined the variation landscape of 71 species in 2,144 human fecal metagenomes and found that in 44 of these, accounting for 72% of the total assigned microbial abundance, single-nucleotide variation clearly indicates the existence of sub-populations (here termed subspecies). A single subspecies (per species) usually dominates within each host, as expected from ecological theory. At the global scale, geographic distributions of subspecies differ between phyla, with Firmicutes subspecies being significantly more geographically restricted. To investigate the functional significance of the delineated subspecies, we identified genes that consistently distinguish them in a manner that is independent of reference genomes. We further associated these subspecies-specific genes with properties of the microbial community and the host. For example, two of the three Eubacterium rectale subspecies consistently harbor an accessory pro-inflammatory flagellum operon that is associated with lower gut community diversity, higher host BMI, and higher blood fasting insulin levels. Using an additional 676 human oral samples, we further demonstrate the existence of niche specialized subspecies in the different parts of the oral cavity. Taken together, we provide evidence for subspecies in the majority of abundant gut prokaryotes, leading to a better functional and ecological understanding of the human gut microbiome in conjunction with its host.


Assuntos
Microbioma Gastrointestinal , Microbiota , Escherichia coli/fisiologia , Microbioma Gastrointestinal/genética , Genes Bacterianos , Humanos , Microbiota/genética , Fenótipo , Filogeografia , Especificidade da Espécie
5.
Mol Syst Biol ; 10: 766, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25432777

RESUMO

Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC-associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that distinguished CRC patients from tumor-free controls in a study population of 156 participants. Accuracy of metagenomic CRC detection was similar to the standard fecal occult blood test (FOBT) and when both approaches were combined, sensitivity improved > 45% relative to the FOBT, while maintaining its specificity. Accuracy of metagenomic CRC detection did not differ significantly between early- and late-stage cancer and could be validated in independent patient and control populations (N = 335) from different countries. CRC-associated changes in the fecal microbiome at least partially reflected microbial community composition at the tumor itself, indicating that observed gene pool differences may reveal tumor-related host-microbe interactions. Indeed, we deduced a metabolic shift from fiber degradation in controls to utilization of host carbohydrates and amino acids in CRC patients, accompanied by an increase of lipopolysaccharide metabolism.


Assuntos
Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/microbiologia , Detecção Precoce de Câncer/métodos , Fezes/microbiologia , Estudos de Casos e Controles , Humanos , Metagenômica/métodos , Microbiota , Tipagem Molecular , Sangue Oculto , Sensibilidade e Especificidade
7.
Elife ; 82019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30747106

RESUMO

The gastrointestinal tract is abundantly colonized by microbes, yet the translocation of oral species to the intestine is considered a rare aberrant event, and a hallmark of disease. By studying salivary and fecal microbial strain populations of 310 species in 470 individuals from five countries, we found that transmission to, and subsequent colonization of, the large intestine by oral microbes is common and extensive among healthy individuals. We found evidence for a vast majority of oral species to be transferable, with increased levels of transmission in colorectal cancer and rheumatoid arthritis patients and, more generally, for species described as opportunistic pathogens. This establishes the oral cavity as an endogenous reservoir for gut microbial strains, and oral-fecal transmission as an important process that shapes the gastrointestinal microbiome in health and disease.


Assuntos
Bactérias/classificação , Bactérias/genética , Intestino Grosso/microbiologia , Microbiota , Boca/microbiologia , Análise por Conglomerados , Fezes/microbiologia , Humanos , Metagenômica , Saliva/microbiologia
8.
Nat Commun ; 10(1): 1014, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833550

RESUMO

Metagenomic sequencing has greatly improved our ability to profile the composition of environmental and host-associated microbial communities. However, the dependency of most methods on reference genomes, which are currently unavailable for a substantial fraction of microbial species, introduces estimation biases. We present an updated and functionally extended tool based on universal (i.e., reference-independent), phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) enabling the profiling of >7700 microbial species. As more than 30% of them could not previously be quantified at this taxonomic resolution, relative abundance estimates based on mOTUs are more accurate compared to other methods. As a new feature, we show that mOTUs, which are based on essential housekeeping genes, are demonstrably well-suited for quantification of basal transcriptional activity of community members. Furthermore, single nucleotide variation profiles estimated using mOTUs reflect those from whole genomes, which allows for comparing microbial strain populations (e.g., across different human body sites).


Assuntos
Metagenômica , Microbiota/genética , Filogenia , Algoritmos , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Genes Essenciais , Marcadores Genéticos , Genoma , Interações entre Hospedeiro e Microrganismos , Humanos , Anotação de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
10.
Nat Microbiol ; 3(1): 8-16, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29255284

RESUMO

Population stratification is a useful approach for a better understanding of complex biological problems in human health and wellbeing. The proposal that such stratification applies to the human gut microbiome, in the form of distinct community composition types termed enterotypes, has been met with both excitement and controversy. In view of accumulated data and re-analyses since the original work, we revisit the concept of enterotypes, discuss different methods of dividing up the landscape of possible microbiome configurations, and put these concepts into functional, ecological and medical contexts. As enterotypes are of use in describing the gut microbial community landscape and may become relevant in clinical practice, we aim to reconcile differing views and encourage a balanced application of the concept.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Metagenoma , Animais , Bactérias/genética , Técnicas de Tipagem Bacteriana , Biodiversidade , Humanos , Metagenômica , RNA Ribossômico 16S/genética
11.
Sci Rep ; 7(1): 16324, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176730

RESUMO

Blowflies and houseflies are mechanical vectors inhabiting synanthropic environments around the world. They feed and breed in fecal and decaying organic matter, but the microbiome they harbour and transport is largely uncharacterized. We sampled 116 individual houseflies and blowflies from varying habitats on three continents and subjected them to high-coverage, whole-genome shotgun sequencing. This allowed for genomic and metagenomic analyses of the host-associated microbiome at the species level. Both fly host species segregate based on principal coordinate analysis of their microbial communities, but they also show an overlapping core microbiome. Legs and wings displayed the largest microbial diversity and were shown to be an important route for microbial dispersion. The environmental sequencing approach presented here detected a stochastic distribution of human pathogens, such as Helicobacter pylori, thereby demonstrating the potential of flies as proxies for environmental and public health surveillance.


Assuntos
Moscas Domésticas/microbiologia , Animais , Fezes/microbiologia , Helicobacter pylori/isolamento & purificação , Metagenômica , Microbiota/fisiologia , Filogenia , Análise de Sequência de DNA
12.
Nat Biotechnol ; 35(11): 1069-1076, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28967887

RESUMO

Technical variation in metagenomic analysis must be minimized to confidently assess the contributions of microbiota to human health. Here we tested 21 representative DNA extraction protocols on the same fecal samples and quantified differences in observed microbial community composition. We compared them with differences due to library preparation and sample storage, which we contrasted with observed biological variation within the same specimen or within an individual over time. We found that DNA extraction had the largest effect on the outcome of metagenomic analysis. To rank DNA extraction protocols, we considered resulting DNA quantity and quality, and we ascertained biases in estimates of community diversity and the ratio between Gram-positive and Gram-negative bacteria. We recommend a standardized DNA extraction method for human fecal samples, for which transferability across labs was established and which was further benchmarked using a mock community of known composition. Its adoption will improve comparability of human gut microbiome studies and facilitate meta-analyses.


Assuntos
Fracionamento Químico/métodos , DNA/química , Fezes/química , Metagenômica , Bactérias/genética , Biologia Computacional , Humanos , Controle de Qualidade , Especificidade da Espécie
13.
Science ; 352(6285): 586-9, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27126044

RESUMO

Fecal microbiota transplantation (FMT) has shown efficacy in treating recurrent Clostridium difficile infection and is increasingly being applied to other gastrointestinal disorders, yet the fate of native and introduced microbial strains remains largely unknown. To quantify the extent of donor microbiota colonization, we monitored strain populations in fecal samples from a recent FMT study on metabolic syndrome patients using single-nucleotide variants in metagenomes. We found extensive coexistence of donor and recipient strains, persisting 3 months after treatment. Colonization success was greater for conspecific strains than for new species, the latter falling within fluctuation levels observed in healthy individuals over a similar time frame. Furthermore, same-donor recipients displayed varying degrees of microbiota transfer, indicating individual patterns of microbiome resistance and donor-recipient compatibilities.


Assuntos
Infecções por Clostridium/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Infecções por Clostridium/microbiologia , Fezes/microbiologia , Humanos , Simbiose , Doadores de Tecidos , Transplante Homólogo
14.
Genome Biol ; 16: 73, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25888008

RESUMO

BACKGROUND: Metagenomics has become a prominent approach for exploring the role of the gut microbiota in human health. However, the temporal variability of the healthy gut microbiome has not yet been studied in depth using metagenomics and little is known about the effects of different sampling and preservation approaches. We performed metagenomic analysis on fecal samples from seven subjects collected over a period of up to two years to investigate temporal variability and assess preservation-induced variation, specifically, fresh frozen compared to RNALater. We also monitored short-term disturbances caused by antibiotic treatment and bowel cleansing in one subject. RESULTS: We find that the human gut microbiome is temporally stable and highly personalized at both taxonomic and functional levels. Over multiple time points, samples from the same subject clustered together, even in the context of a large dataset of 888 European and American fecal metagenomes. One exception was observed in an antibiotic intervention case where, more than one year after the treatment, samples did not resemble the pre-treatment state. Clustering was not affected by the preservation method. No species differed significantly in abundance, and only 0.36% of gene families were differentially abundant between preservation methods. CONCLUSIONS: Technical variability is small compared to the temporal variability of an unperturbed gut microbiome, which in turn is much smaller than the observed between-subject variability. Thus, short-term preservation of fecal samples in RNALater is an appropriate and cost-effective alternative to freezing of fecal samples for metagenomic studies.


Assuntos
Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Genoma Humano , Metagenoma/genética , Fatores de Tempo , Adulto , Análise por Conglomerados , DNA Bacteriano/genética , Fezes/microbiologia , Feminino , Trato Gastrointestinal/metabolismo , Humanos , Masculino , Metagenômica/métodos
15.
Science ; 348(6237): 1261359, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25999513

RESUMO

Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems.


Assuntos
Microbiota/genética , Plâncton/classificação , Água do Mar/microbiologia , Bases de Dados Genéticas , Ecossistema , Trato Gastrointestinal/microbiologia , Variação Genética , Humanos , Metagenoma , Oceanos e Mares , Plâncton/genética , Plâncton/isolamento & purificação
16.
Genomics Proteomics Bioinformatics ; 11(2): 77-85, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23499923

RESUMO

Information theory-based methods have been shown to be sensitive and specific for predicting and quantifying the effects of non-coding mutations in Mendelian diseases. We present the Shannon pipeline software for genome-scale mutation analysis and provide evidence that the software predicts variants affecting mRNA splicing. Individual information contents (in bits) of reference and variant splice sites are compared and significant differences are annotated and prioritized. The software has been implemented for CLC-Bio Genomics platform. Annotation indicates the context of novel mutations as well as common and rare SNPs with splicing effects. Potential natural and cryptic mRNA splicing variants are identified, and null mutations are distinguished from leaky mutations. Mutations and rare SNPs were predicted in genomes of three cancer cell lines (U2OS, U251 and A431), which were supported by expression analyses. After filtering, tractable numbers of potentially deleterious variants are predicted by the software, suitable for further laboratory investigation. In these cell lines, novel functional variants comprised 6-17 inactivating mutations, 1-5 leaky mutations and 6-13 cryptic splicing mutations. Predicted effects were validated by RNA-seq analysis of the three aforementioned cancer cell lines, and expression microarray analysis of SNPs in HapMap cell lines.


Assuntos
Genoma Humano , Mutação , Splicing de RNA/genética , Software , Expressão Gênica , Humanos , Mutação Puntual , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , RNA Neoplásico/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa