Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 295(17): 5564-5576, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213598

RESUMO

Knowledge of the molecular events in mitochondrial DNA (mtDNA) replication is crucial to understanding the origins of human disorders arising from mitochondrial dysfunction. Twinkle helicase is an essential component of mtDNA replication. Here, we employed atomic force microscopy imaging in air and liquids to visualize ring assembly, DNA binding, and unwinding activity of individual Twinkle hexamers at the single-molecule level. We observed that the Twinkle subunits self-assemble into hexamers and higher-order complexes that can switch between open and closed-ring configurations in the absence of DNA. Our analyses helped visualize Twinkle loading onto and unloading from DNA in an open-ringed configuration. They also revealed that closed-ring conformers bind and unwind several hundred base pairs of duplex DNA at an average rate of ∼240 bp/min. We found that the addition of mitochondrial single-stranded (ss) DNA-binding protein both influences the ways Twinkle loads onto defined DNA substrates and stabilizes the unwound ssDNA product, resulting in a ∼5-fold stimulation of the apparent DNA-unwinding rate. Mitochondrial ssDNA-binding protein also increased the estimated translocation processivity from 1750 to >9000 bp before helicase disassociation, suggesting that more than half of the mitochondrial genome could be unwound by Twinkle during a single DNA-binding event. The strategies used in this work provide a new platform to examine Twinkle disease variants and the core mtDNA replication machinery. They also offer an enhanced framework to investigate molecular mechanisms underlying deletion and depletion of the mitochondrial genome as observed in mitochondrial diseases.


Assuntos
DNA Helicases/metabolismo , DNA/metabolismo , Proteínas Mitocondriais/metabolismo , DNA/análise , DNA Helicases/análise , Humanos , Microscopia de Força Atômica , Mitocôndrias/metabolismo , Proteínas Mitocondriais/análise , Conformação de Ácido Nucleico , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo
2.
J Biol Chem ; 293(3): 1054-1069, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29175904

RESUMO

Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids, mediated by the cohesin protein complex, which also plays crucial roles in diverse genome maintenance pathways. Current models attribute DNA binding by cohesin to entrapment of dsDNA by the cohesin ring subunits (SMC1, SMC3, and RAD21 in humans). However, the biophysical properties and activities of the fourth core cohesin subunit SA2 (STAG2) are largely unknown. Here, using single-molecule atomic force and fluorescence microscopy imaging as well as fluorescence anisotropy measurements, we established that SA2 binds to both dsDNA and ssDNA, albeit with a higher binding affinity for ssDNA. We observed that SA2 can switch between the 1D diffusing (search) mode on dsDNA and stable binding (recognition) mode at ssDNA gaps. Although SA2 does not specifically bind to centromeric or telomeric sequences, it does recognize DNA structures often associated with DNA replication and double-strand break repair, such as a double-stranded end, single-stranded overhang, flap, fork, and ssDNA gap. SA2 loss leads to a defect in homologous recombination-mediated DNA double-strand break repair. These results suggest that SA2 functions at intermediate DNA structures during DNA transactions in genome maintenance pathways. These findings have important implications for understanding the function of cohesin in these pathways.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Reparo do DNA/genética , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Polarização de Fluorescência , Instabilidade Genômica/genética , Instabilidade Genômica/fisiologia , Microscopia de Força Atômica , Microscopia de Fluorescência , Ligação Proteica/genética , Ligação Proteica/fisiologia , Coesinas
3.
Nucleic Acids Res ; 44(13): 6363-76, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27298259

RESUMO

Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids. Cohesion is thought to occur through the entrapment of DNA within the tripartite ring (Smc1, Smc3 and Rad21) with enforcement from a fourth subunit (SA1/SA2). Surprisingly, cohesin rings do not play a major role in sister telomere cohesion. Instead, this role is replaced by SA1 and telomere binding proteins (TRF1 and TIN2). Neither the DNA binding property of SA1 nor this unique telomere cohesion mechanism is understood. Here, using single-molecule fluorescence imaging, we discover that SA1 displays two-state binding on DNA: searching by one-dimensional (1D) free diffusion versus recognition through subdiffusive sliding at telomeric regions. The AT-hook motif in SA1 plays dual roles in modulating non-specific DNA binding and subdiffusive dynamics over telomeric regions. TRF1 tethers SA1 within telomeric regions that SA1 transiently interacts with. SA1 and TRF1 together form longer DNA-DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy imaging. These results suggest that at telomeres cohesion relies on the molecular interplay between TRF1 and SA1 to promote DNA-DNA pairing, while along chromosomal arms the core cohesin assembly might also depend on SA1 1D diffusion on DNA and sequence-specific DNA binding.


Assuntos
Segregação de Cromossomos/genética , Proteínas Nucleares/genética , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Proteína 1 de Ligação a Repetições Teloméricas/genética , Motivos AT-Hook/genética , Cromátides/genética , Cromátides/ultraestrutura , Proteínas de Ligação a DNA/genética , Humanos , Microscopia de Força Atômica , Mitose/genética , Proteínas Nucleares/metabolismo , Telômero/ultraestrutura , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo
4.
Nucleic Acids Res ; 42(4): 2493-504, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24271387

RESUMO

Human telomeres are maintained by the shelterin protein complex in which TRF1 and TRF2 bind directly to duplex telomeric DNA. How these proteins find telomeric sequences among a genome of billions of base pairs and how they find protein partners to form the shelterin complex remains uncertain. Using single-molecule fluorescence imaging of quantum dot-labeled TRF1 and TRF2, we study how these proteins locate TTAGGG repeats on DNA tightropes. By virtue of its basic domain TRF2 performs an extensive 1D search on nontelomeric DNA, whereas TRF1's 1D search is limited. Unlike the stable and static associations observed for other proteins at specific binding sites, TRF proteins possess reduced binding stability marked by transient binding (∼ 9-17 s) and slow 1D diffusion on specific telomeric regions. These slow diffusion constants yield activation energy barriers to sliding ∼ 2.8-3.6 κ(B)T greater than those for nontelomeric DNA. We propose that the TRF proteins use 1D sliding to find protein partners and assemble the shelterin complex, which in turn stabilizes the interaction with specific telomeric DNA. This 'tag-team proofreading' represents a more general mechanism to ensure a specific set of proteins interact with each other on long repetitive specific DNA sequences without requiring external energy sources.


Assuntos
DNA/metabolismo , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , DNA/química , Difusão , Ligação Proteica , Estrutura Terciária de Proteína , Sequências Repetitivas de Ácido Nucleico , Telômero/química , Proteína 2 de Ligação a Repetições Teloméricas/química
5.
Sci Rep ; 6: 20513, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26856421

RESUMO

Shelterin protein TRF2 modulates telomere structures by promoting dsDNA compaction and T-loop formation. Advancement of our understanding of the mechanism underlying TRF2-mediated DNA compaction requires additional information regarding DNA paths in TRF2-DNA complexes. To uncover the location of DNA inside protein-DNA complexes, we recently developed the Dual-Resonance-frequency-Enhanced Electrostatic force Microscopy (DREEM) imaging technique. DREEM imaging shows that in contrast to chromatin with DNA wrapping around histones, large TRF2-DNA complexes (with volumes larger than TRF2 tetramers) compact DNA inside TRF2 with portions of folded DNA appearing at the edge of these complexes. Supporting coarse-grained molecular dynamics simulations uncover the structural requirement and sequential steps during TRF2-mediated DNA compaction and result in folded DNA structures with protruding DNA loops as seen in DREEM imaging. Revealing DNA paths in TRF2 complexes provides new mechanistic insights into structure-function relationships underlying telomere maintenance pathways.


Assuntos
DNA/química , Complexos Multiproteicos/química , Conformação de Ácido Nucleico , Proteína 2 de Ligação a Repetições Teloméricas/química , DNA/metabolismo , Células HeLa , Humanos , Microscopia , Complexos Multiproteicos/metabolismo , Eletricidade Estática , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
6.
DNA Repair (Amst) ; 20: 142-153, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24569170

RESUMO

Telomeres play important roles in maintaining the stability of linear chromosomes. Telomere maintenance involves dynamic actions of multiple proteins interacting with long repetitive sequences and complex dynamic DNA structures, such as G-quadruplexes, T-loops and t-circles. Given the heterogeneity and complexity of telomeres, single-molecule approaches are essential to fully understand the structure-function relationships that govern telomere maintenance. In this review, we present a brief overview of the principles of single-molecule imaging and manipulation techniques. We then highlight results obtained from applying these single-molecule techniques for studying structure, dynamics and functions of G-quadruplexes, telomerase, and shelterin proteins.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Força Atômica/métodos , Pinças Ópticas , Proteínas de Ligação a Telômeros/química , Telômero/química , Animais , Humanos , Microscopia de Fluorescência/métodos , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
7.
Biomicrofluidics ; 8(3): 034113, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25379073

RESUMO

We present an analytic technique for probing protein-catalyzed transient DNA loops that is based on nanofluidic channels. In these nanochannels, DNA is forced in a linear configuration that makes loops appear as folds whose size can easily be quantified. Using this technique, we study the interaction between T4 DNA ligase and DNA. We find that T4 DNA ligase binding changes the physical characteristics of the DNApolymer, in particular persistence length and effective width. We find that the rate of DNA fold unrolling is significantly reduced when T4 DNA ligase and ATP are applied to bare DNA. Together with evidence of T4 DNA ligase bridging two different segments of DNA based on AFM imaging, we thus conclude that ligase can transiently stabilize folded DNA configurations by coordinating genetically distant DNA stretches.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa