Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(52): 21444-9, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236189

RESUMO

The treatment of diseased vasculature remains challenging, in part because of the difficulty in implanting drug-eluting devices without subjecting vessels to damaging mechanical forces. Implanting materials using adhesive forces could overcome this challenge, but materials have previously not been shown to durably adhere to intact endothelium under blood flow. Marine mussels secrete strong underwater adhesives that have been mimicked in synthetic systems. Here we develop a drug-eluting bioadhesive gel that can be locally and durably glued onto the inside surface of blood vessels. In a mouse model of atherosclerosis, inflamed plaques treated with steroid-eluting adhesive gels had reduced macrophage content and developed protective fibrous caps covering the plaque core. Treatment also lowered plasma cytokine levels and biomarkers of inflammation in the plaque. The drug-eluting devices developed here provide a general strategy for implanting therapeutics in the vasculature using adhesive forces and could potentially be used to stabilize rupture-prone plaques.


Assuntos
Adesivos/química , Vasos Sanguíneos/patologia , Dexametasona/uso terapêutico , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Adesividade/efeitos dos fármacos , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Artérias/efeitos dos fármacos , Artérias/patologia , Vasos Sanguíneos/efeitos dos fármacos , Catecóis/química , Dexametasona/farmacologia , Sistemas de Liberação de Medicamentos , Feminino , Géis/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Implantes Experimentais , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Solubilidade , Estresse Mecânico , Estresse Fisiológico/efeitos dos fármacos
2.
PLoS One ; 12(10): e0186116, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023478

RESUMO

Vasculoprotective endothelium glycocalyx (GCX) shedding plays a critical role in vascular disease. Previous work demonstrated that GCX degradation disrupts endothelial cell (EC) gap junction connexin (Cx) proteins, likely blocking interendothelial molecular transport that maintains EC and vascular tissue homeostasis to resist disease. Here, we focused on GCX regeneration and tested the hypothesis that vasculoprotective EC function can be stimulated via replacement of GCX when it is shed. We used EC with [i] intact heparan sulfate (HS), the most abundant GCX component; [ii] degraded HS; or [iii] HS that was restored after enzyme degradation, by cellular self-recovery or artificially. Artificial HS restoration was achieved via treatment with exogenous HS, with or without the GCX regenerator and protector sphingosine 1- phosphate (S1P). In these cells we immunocytochemically examined expression of Cx isotype 43 (Cx43) at EC borders and characterized Cx-containing gap junction activity by measuring interendothelial spread of gap junction permeable Lucifer Yellow dye. With intact HS, 60% of EC borders expressed Cx43 and dye spread to 2.88 ± 0.09 neighboring cells. HS degradation decreased Cx43 expression to 30% and reduced dye spread to 1.87± 0.06 cells. Cellular self-recovery of HS restored baseline levels of Cx43 and dye transfer. Artificial HS recovery with exogenous HS partially restored Cx43 expression to 46% and yielded dye spread to only 1.03 ± 0.07 cells. Treatment with both HS and S1P, recovered HS and restored Cx43 to 56% with significant dye transfer to 3.96 ± 0.23 cells. This is the first evidence of GCX regeneration in a manner that effectively restores vasculoprotective EC communication.


Assuntos
Comunicação Celular , Células Endoteliais/citologia , Glicocálix/metabolismo , Heparitina Sulfato/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Células Cultivadas , Conexina 43/metabolismo , Células Endoteliais/metabolismo , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica , Humanos , Ratos , Esfingosina/metabolismo
3.
Regen Biomater ; 3(2): 111-3, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27047677

RESUMO

In this article, an expansive interpretation of "Tissue Engineering" is proposed which is in congruence with classical and recent published definitions. I further simplify the definition of tissue engineering as: "Exerting systematic control of the body's cells, matrices and fluids." As a consequence, many medical therapies not commonly considered tissue engineering are placed in this category because of their effect on the body's responses. While the progress of tissue engineering strategies is inexorable and generally positive, it has been subject to setbacks as have many important medical therapies. Medical practice is currently undergoing a transition on several fronts (academics, start-up companies, going concerns) from the era of "replacement medicine" where body parts and functions are replaced by mechanical, electrical or chemical therapies to the era of tissue engineering where health is restored by regeneration generation or limitation of the body's tissues and functions by exploiting our expanding knowledge of the body's biological processes to produce natural, healthy outcomes.

4.
Acta Biomater ; 7(5): 1965-72, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21232638

RESUMO

A series of poly(ethylene glycol)-co-poly(lactide) diacrylate macromers was synthesized with variable PEG molecular weights (10 or 20 kDa) and lactate contents (0 or 6 lactates per end group). These macromers were polymerized to form hydrogels by free radical polymerization using either redox or photochemical initiators. The extent of polymerization was determined by monitoring the compressive modulus of the resulting hydrogels and by quantitative determination of unreacted acrylate after exhaustive hydrolysis of the gel. Polymerization efficiency was found to depend on the lactate content of the macromer, with higher lactate macromers giving more efficient polymerization. For redox-initiated polymerization using ferrous gluconate/t-butyl hydroperoxide initiator, macromers containing approximately six lactate repeats per end group required lower concentrations of initiator to reach high conversion than lactate-free macromers. Photochemical polymerization with α,α-dimethoxy-α-phenylacetophenone (Irgacure 651(®)) was found to be less efficient than redox polymerization, requiring the addition of N-vinyl-2- pyrrolidone (NVP) as a co-monomer to achieve conversions comparable with redox polymerization. When conditions were optimized to provide near complete conversion for all gels, the presence of lactate repeat units in the hydrogel was generally found to reduce swelling and increase the compressive modulus. Calculated values of molecular weight between cross-links (M(c)) and mesh size using Flory-Rehner theory showed that macromer molecular weight had the greatest impact on the network structure of the gel.


Assuntos
Radicais Livres/química , Interações Hidrofóbicas e Hidrofílicas/efeitos da radiação , Luz , Polietilenoglicóis/síntese química , Polimerização/efeitos da radiação , Reagentes de Ligações Cruzadas/farmacologia , Módulo de Elasticidade/efeitos dos fármacos , Módulo de Elasticidade/efeitos da radiação , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Peso Molecular , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Polietilenoglicóis/química , Polimerização/efeitos dos fármacos , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa