Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(4): 2030-2044, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38261971

RESUMO

DNA regulation, replication and repair are processes fundamental to all known organisms and the sliding clamp proliferating cell nuclear antigen (PCNA) is central to all these processes. S-phase delaying protein 1 (Spd1) from S. pombe, an intrinsically disordered protein that causes checkpoint activation by inhibiting the enzyme ribonucleotide reductase, has one of the most divergent PCNA binding motifs known. Using NMR spectroscopy, in vivo assays, X-ray crystallography, calorimetry, and Monte Carlo simulations, an additional PCNA binding motif in Spd1, a PIP-box, is revealed. The two tandemly positioned, low affinity sites exchange rapidly on PCNA exploiting the same binding sites. Increasing or decreasing the binding affinity between Spd1 and PCNA through mutations of either motif compromised the ability of Spd1 to cause checkpoint activation in yeast. These results pinpoint a role for PCNA in Spd1-mediated checkpoint activation and suggest that its tandemly positioned short linear motifs create a neatly balanced competition-based system, involving PCNA, Spd1 and the small ribonucleotide reductase subunit, Suc22R2. Similar mechanisms may be relevant in other PCNA binding ligands where divergent binding motifs so far have gone under the PIP-box radar.


Assuntos
Proteínas de Ciclo Celular , Antígeno Nuclear de Célula em Proliferação , Proteínas de Schizosaccharomyces pombe , Sítios de Ligação , Replicação do DNA , Proteínas Intrinsicamente Desordenadas/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Ribonucleotídeo Redutases/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716273

RESUMO

Many intrinsically disordered proteins (IDPs) may undergo liquid-liquid phase separation (LLPS) and participate in the formation of membraneless organelles in the cell, thereby contributing to the regulation and compartmentalization of intracellular biochemical reactions. The phase behavior of IDPs is sequence dependent, and its investigation through molecular simulations requires protein models that combine computational efficiency with an accurate description of intramolecular and intermolecular interactions. We developed a general coarse-grained model of IDPs, with residue-level detail, based on an extensive set of experimental data on single-chain properties. Ensemble-averaged experimental observables are predicted from molecular simulations, and a data-driven parameter-learning procedure is used to identify the residue-specific model parameters that minimize the discrepancy between predictions and experiments. The model accurately reproduces the experimentally observed conformational propensities of a set of IDPs. Through two-body as well as large-scale molecular simulations, we show that the optimization of the intramolecular interactions results in improved predictions of protein self-association and LLPS.


Assuntos
Condensados Biomoleculares/química , Condensados Biomoleculares/fisiologia , Proteínas Intrinsicamente Desordenadas/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Teóricos , Organelas/química , Organelas/fisiologia , Mapas de Interação de Proteínas
3.
Proc Natl Acad Sci U S A ; 117(31): 18216-18223, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32680962

RESUMO

Cysteine disulfides, which constitute an important component in biological redox buffer systems, are highly reactive toward the hydroxyl radical (•OH). The mechanistic details of this reaction, however, remain unclear, largely due to the difficulty in characterizing unstable reaction products. Herein, we have developed a combined approach involving mass spectrometry (MS) and theoretical calculations to investigate reactions of •OH with cysteine disulfides (Cys-S-S-R) in the gas phase. Four types of first-generation products were identified: protonated ions of the cysteine thiyl radical (+Cys-S•), cysteine (+Cys-SH), cysteine sulfinyl radical (+Cys-SO•), and cysteine sulfenic acid (+Cys-SOH). The relative reaction rates and product branching ratios responded sensitively to the electronic property of the R group, providing key evidence to deriving a two-step reaction mechanism. The first step involved •OH conducting a back-side attack on one of the sulfur atoms, forming sulfenic acid (-SOH) and thiyl radical (-S•) product pairs. A subsequent H transfer step within the product complex was favored for protonated systems, generating sulfinyl radical (-SO•) and thiol (-SH) products. Because sulfenic acid is a potent scavenger of peroxyl radicals, our results implied that cysteine disulfide can form two lines of defense against reactive oxygen species, one using the cysteine disulfide itself and the other using the sulfenic acid product of the conversion of cysteine disulfide. This aspect suggested that, in a nonpolar environment, cysteine disulfides might play a more active role in the antioxidant network than previously appreciated.


Assuntos
Antioxidantes/química , Cisteína/química , Radical Hidroxila/química , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular , Compostos de Sulfidrila/química
4.
PLoS Comput Biol ; 17(1): e1008551, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481784

RESUMO

Owing to their plasticity, intrinsically disordered and multidomain proteins require descriptions based on multiple conformations, thus calling for techniques and analysis tools that are capable of dealing with conformational ensembles rather than a single protein structure. Here, we introduce DEER-PREdict, a software program to predict Double Electron-Electron Resonance distance distributions as well as Paramagnetic Relaxation Enhancement rates from ensembles of protein conformations. DEER-PREdict uses an established rotamer library approach to describe the paramagnetic probes which are bound covalently to the protein.DEER-PREdict has been designed to operate efficiently on large conformational ensembles, such as those generated by molecular dynamics simulation, to facilitate the validation or refinement of molecular models as well as the interpretation of experimental data. The performance and accuracy of the software is demonstrated with experimentally characterized protein systems: HIV-1 protease, T4 Lysozyme and Acyl-CoA-binding protein. DEER-PREdict is open source (GPLv3) and available at github.com/KULL-Centre/DEERpredict and as a Python PyPI package pypi.org/project/DEERPREdict.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Software , Biologia Computacional/métodos , Bases de Dados de Proteínas , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular
5.
Biochemistry ; 60(45): 3398-3407, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34694774

RESUMO

Bifidobacterium longum endo-α-N-acetylgalactosaminidase (GH101), EngBF, is highly specific toward the mucin Core 1 glycan, Galß1-3GalNAc. Apart from the side chains involved in the retaining mechanism of EngBF, Asp-682 is important for the activity. In the crystal structures of both EngBF and EngSP (from Streptococcus pneumoniae), we identified a conserved water molecule in proximity to Asp-682 and the homologue residue in EngSP. The water molecule also coordinates the catalytic nucleophile and three other residues conserved in GH101 enzymes; in EngBF, these residues are His-685, His-718, and Asn-720. With casein-glycomacropeptide as the substrate, the importance of Asp-682 was confirmed by the lack of a detectable activity for the D682N enzyme. The enzyme variants, H685A, H718A, H685Q, and H718Q, all displayed only a modestly reduction in kcat of up to 15 fold for the H718A variant. However, the double-substituted variants, H685A/H718A and H685Q/H718Q, had a greatly reduced kcat value by about 200 fold compared to that of wild-type EngBF. With the synthetic substrate, Galß(1-3)GalNAcα1-para-nitrophenol, kcat of the double-substituted variants was only up to 30-fold reduced and was found to increase with pH. Compared to the pre-steady-state kinetics of wild-type EngBF, a burst of about the size of the enzyme concentration was absent with the double-substituted EngBF variants, indicating that the nucleophilic attack had become at least as slow as the hydrolysis of the enzyme intermediate. Together, the results indicate that not only Asp-682 but also the entire conserved network of His-685, His-718, and what we suggest is a catalytic water molecule is important in the activation of the catalytic nucleophile.


Assuntos
Mucina-1/química , Mucinas/química , alfa-N-Acetilgalactosaminidase/metabolismo , Bifidobacterium longum/metabolismo , Caseínas/metabolismo , Catálise , Hidrólise , Cinética , Mucina-1/metabolismo , Mucinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Água/química , alfa-N-Acetilgalactosaminidase/fisiologia
6.
Nucleic Acids Res ; 46(18): 9816-9828, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30102405

RESUMO

p15PAF is an oncogenic intrinsically disordered protein that regulates DNA replication and lesion bypass by interacting with the human sliding clamp PCNA. In the absence of DNA, p15PAF traverses the PCNA ring via an extended PIP-box that contacts the sliding surface. Here, we probed the atomic-scale structure of p15PAF-PCNA-DNA ternary complexes. Crystallography and MD simulations show that, when p15PAF occupies two subunits of the PCNA homotrimer, DNA within the ring channel binds the unoccupied subunit. The structure of PCNA-bound p15PAF in the absence and presence of DNA is invariant, and solution NMR confirms that DNA does not displace p15PAF from the ring wall. Thus, p15PAF reduces the available sliding surfaces of PCNA, and may function as a belt that fastens the DNA to the clamp during synthesis by the replicative polymerase (pol δ). This constraint, however, may need to be released for efficient DNA lesion bypass by the translesion synthesis polymerase (pol η). Accordingly, our biochemical data show that p15PAF impairs primer synthesis by pol η-PCNA holoenzyme against both damaged and normal DNA templates. In light of our findings, we discuss the possible mechanistic roles of p15PAF in DNA replication and suppression of DNA lesion bypass.


Assuntos
Proteínas de Transporte/química , DNA/química , Proteínas Intrinsicamente Desordenadas/química , Antígeno Nuclear de Célula em Proliferação/química , Proteínas de Transporte/genética , Cristalografia por Raios X , DNA/genética , DNA Polimerase III/química , DNA Polimerase III/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Escherichia coli/genética , Holoenzimas/química , Holoenzimas/genética , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Espectroscopia de Ressonância Magnética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Antígeno Nuclear de Célula em Proliferação/genética
7.
Nucleic Acids Res ; 45(3): 1501-1515, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180305

RESUMO

The intrinsically disordered p15PAF regulates DNA replication and repair when interacting with the Proliferating Cell Nuclear Antigen (PCNA) sliding clamp. As many interactions between disordered proteins and globular partners involved in signaling and regulation, the complex between p15PAF and trimeric PCNA is of low affinity, forming a transient complex that is difficult to characterize at a structural level due to its inherent polydispersity. We have determined the structure, conformational fluctuations, and relative population of the five species that coexist in solution by combining small-angle X-ray scattering (SAXS) with molecular modelling. By using explicit ensemble descriptions for the individual species, built using integrative approaches and molecular dynamics (MD) simulations, we collectively interpreted multiple SAXS profiles as population-weighted thermodynamic mixtures. The analysis demonstrates that the N-terminus of p15PAF penetrates the PCNA ring and emerges on the back face. This observation substantiates the role of p15PAF as a drag regulating PCNA processivity during DNA repair. Our study reveals the power of ensemble-based approaches to decode structural, dynamic, and thermodynamic information from SAXS data. This strategy paves the way for deciphering the structural bases of flexible, transient and multivalent macromolecular assemblies involved in pivotal biological processes.


Assuntos
Proteínas de Transporte/química , Antígeno Nuclear de Célula em Proliferação/química , Proteínas de Ligação a DNA , Humanos , Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Espalhamento a Baixo Ângulo , Difração de Raios X
8.
Phys Chem Chem Phys ; 20(7): 4793-4804, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29383342

RESUMO

Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH3, -NH2, -C(O)OH, -CN, and -NO2). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H2O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH3SSH being the most reactive species found in this study (overall rate constant: 4.55 × 1012 M-1 s-1). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.

9.
Phys Chem Chem Phys ; 19(19): 12331-12342, 2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28453016

RESUMO

The atmospheric oxidation of methyl hydroperoxide by the hydroxyl radical has been investigated employing high level theoretical methods. This reaction is important in the chemistry of the troposphere because these species contribute to the oxidizing capacity of the atmosphere and therefore we have studied the bare reaction and the effect of the relative humidity as well. In both cases the reaction can proceed either by abstraction of the terminal hydrogen atom of the OH group, producing CH3O2 + H2O, or by abstraction of one hydrogen atom of the CH3 group, forming H2CO + OH + H2O. We have employed BH&HLYP, QCISD and CCSD(T) theoretical methods along with 6-311+G(2df,2p), aug-cc-pVTZ, aug-cc-pVQZ and CBS basis sets to investigate the reaction mechanism, and conventional and variational transition state theory to study the kinetics of the reaction. For the bare reaction we have computed at room temperature, a rate constant of 3.59 × 10-12 cm3 molecule-1 s-1 for the formation of CH3O2 + H2O and of 1.68 × 10-12 cm3 molecule-1 s-1 for the production of H2CO + OH + H2O, with branching ratios of 68% and 32% respectively. Water vapor enhances the rate constant for the formation of CH3O2 + H2O between 2 and 19%, depending on the temperature and relative humidity, whereas the rate constant for the production of H2CO + OH + H2O is enhanced between 0.3 and 5% by the effect of water vapor under the same conditions, which means that the branching ratio for the formation of CH3O2 + H2O is increased up to 2.5%.

10.
Chemistry ; 22(50): 18092-18100, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27808436

RESUMO

High-level ab initio and Born-Oppenheimer molecular dynamic calculations have been carried out on a series of hydroperoxyalkyl (α-QOOH) radicals with the aim of investigating the stability and unimolecular decomposition mechanism into QO+OH of these species. Dissociation was shown to take place through rotation of the C-O(OH) bond rather than through elongation of the CO-OH bond. Through the C-O(OH) rotation, the unpaired electron of the radical overlaps with the electron density on the O-OH bond, and from this overlap the C=O π bond forms and the O-OH bond breaks spontaneously. The CH2 OOH, CH(CH3 )OOH, CH(OH)OOH, and α-hydroperoxycycloheptadienyl radical were found to decompose spontaneously, but the CH(CHO)OOH has a decomposition energy barrier of 5.95 kcal mol-1 owing to its steric and electronic features. The systems studied in this work provide the first insights into how structural and electronic effects govern the stabilizing influence on elusive α-QOOH radicals.

11.
ACS Synth Biol ; 13(3): 862-875, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357862

RESUMO

Enzymes are indispensable biocatalysts for numerous industrial applications, yet stability, selectivity, and restricted substrate recognition present limitations for their use. Despite the importance of enzyme engineering in overcoming these limitations, success is often challenged by the intricate architecture of enzymes derived from natural sources. Recent advances in computational methods have enabled the de novo design of simplified scaffolds with specific functional sites. Such scaffolds may be advantageous as platforms for enzyme engineering. Here, we present a strategy for the de novo design of a simplified scaffold of an endo-α-N-acetylgalactosaminidase active site, a glycoside hydrolase from the GH101 enzyme family. Using a combination of trRosetta hallucination, iterative cycles of deep-learning-based structure prediction, and ProteinMPNN sequence design, we designed proteins with 290 amino acids incorporating the active site while reducing the molecular weight by over 100 kDa compared to the initial endo-α-N-acetylgalactosaminidase. Of 11 tested designs, six were expressed as soluble monomers, displaying similar or increased thermostabilities compared to the natural enzyme. Despite lacking detectable enzymatic activity, the experimentally determined crystal structures of a representative design closely matched the design with a root-mean-square deviation of 1.0 Å, with most catalytically important side chains within 2.0 Å. The results highlight the potential of scaffold hallucination in designing proteins that may serve as a foundation for subsequent enzyme engineering.


Assuntos
Proteínas de Bactérias , Glicosídeo Hidrolases , Domínio Catalítico , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , alfa-N-Acetilgalactosaminidase/química , alfa-N-Acetilgalactosaminidase/metabolismo , Proteínas de Bactérias/metabolismo , Especificidade por Substrato
12.
Nat Struct Mol Biol ; 30(3): 309-320, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864173

RESUMO

Huntington's disease is a neurodegenerative disorder caused by a CAG expansion in the first exon of the HTT gene, resulting in an extended polyglutamine (poly-Q) tract in huntingtin (httex1). The structural changes occurring to the poly-Q when increasing its length remain poorly understood due to its intrinsic flexibility and the strong compositional bias. The systematic application of site-specific isotopic labeling has enabled residue-specific NMR investigations of the poly-Q tract of pathogenic httex1 variants with 46 and 66 consecutive glutamines. Integrative data analysis reveals that the poly-Q tract adopts long α-helical conformations propagated and stabilized by glutamine side chain to backbone hydrogen bonds. We show that α-helical stability is a stronger signature in defining aggregation kinetics and the structure of the resulting fibrils than the number of glutamines. Our observations provide a structural perspective of the pathogenicity of expanded httex1 and pave the way to a deeper understanding of poly-Q-related diseases.


Assuntos
Éxons , Proteína Huntingtina/genética , Proteína Huntingtina/química , Espectroscopia de Ressonância Magnética , Conformação Proteica em alfa-Hélice
13.
PLoS Comput Biol ; 7(9): e1002201, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21980279

RESUMO

Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest collective motions (i.e., lowest frequency or global modes of motions) favored by the overall architecture are analyzed. Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively determining the oligomer dynamics congruent with required ligand-binding and allosteric activities.


Assuntos
Fosfotransferases/química , Fosfotransferases/metabolismo , Regulação Alostérica , Sítio Alostérico , Aminoácidos/metabolismo , Domínio Catalítico , Biologia Computacional , Simulação por Computador , Dimerização , Modelos Moleculares , Simulação de Dinâmica Molecular , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Especificidade por Substrato , Termodinâmica
14.
Inorg Chem ; 51(14): 7636-41, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22742965

RESUMO

The systematic analysis of the luminescence of a series of alkynyl gold derivatives with general formulas [(diphos)(AuC≡Cpy)(2)] (diphosphane =2,2'-bis(diphenylphosphanyl)propane or dppip (1), bis(diphenylphosphanyl)acetylene or dppa (2), 1,2-bis(diphenylphosphanyl)ethane or dppe (3) and 1,4-bis(diphenylphosphanyl)butane or dppb, (4), has shown a straightforward correlation between the Au(I)···Au(I) distance and the emission quantum yields and decaytimes. The analysis of the decaytimes, quantum yields and thus, the corresponding calculated rate constants demonstrated the existence of a correlation between Au(I)···Au(I) distance and the radiative rate constant for the deactivation of the emissive triplet states. It was concluded that the increased emission of these compounds results from the increase in spin-orbit coupling that favors the spin forbidden transition to the singlet ground state.


Assuntos
Alcinos/química , Ouro/química , Compostos Organoáuricos/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Compostos Organoáuricos/síntese química , Processos Fotoquímicos , Teoria Quântica
15.
Nat Commun ; 13(1): 7833, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539424

RESUMO

During lagging strand synthesis, DNA Ligase 1 (Lig1) cooperates with the sliding clamp PCNA to seal the nicks between Okazaki fragments generated by Pol δ and Flap endonuclease 1 (FEN1). We present several cryo-EM structures combined with functional assays, showing that human Lig1 recruits PCNA to nicked DNA using two PCNA-interacting motifs (PIPs) located at its disordered N-terminus (PIPN-term) and DNA binding domain (PIPDBD). Once Lig1 and PCNA assemble as two-stack rings encircling DNA, PIPN-term is released from PCNA and only PIPDBD is required for ligation to facilitate the substrate handoff from FEN1. Consistently, we observed that PCNA forms a defined complex with FEN1 and nicked DNA, and it recruits Lig1 to an unoccupied monomer creating a toolbelt that drives the transfer of DNA to Lig1. Collectively, our results provide a structural model on how PCNA regulates FEN1 and Lig1 during Okazaki fragments maturation.


Assuntos
DNA Polimerase III , Replicação do DNA , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , DNA Polimerase III/metabolismo , Ligases/metabolismo , DNA/metabolismo , Endonucleases Flap/metabolismo , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo
16.
Elife ; 112022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35129435

RESUMO

The CorA family of proteins regulates the homeostasis of divalent metal ions in many bacteria, archaea, and eukaryotic mitochondria, making it an important target in the investigation of the mechanisms of transport and its functional regulation. Although numerous structures of open and closed channels are now available for the CorA family, the mechanism of the transport regulation remains elusive. Here, we investigated the conformational distribution and associated dynamic behaviour of the pentameric Mg2+ channel CorA at room temperature using small-angle neutron scattering (SANS) in combination with molecular dynamics (MD) simulations and solid-state nuclear magnetic resonance spectroscopy (NMR). We find that neither the Mg2+-bound closed structure nor the Mg2+-free open forms are sufficient to explain the average conformation of CorA. Our data support the presence of conformational equilibria between multiple states, and we further find a variation in the behaviour of the backbone dynamics with and without Mg2+. We propose that CorA must be in a dynamic equilibrium between different non-conducting states, both symmetric and asymmetric, regardless of bound Mg2+ but that conducting states become more populated in Mg2+-free conditions. These properties are regulated by backbone dynamics and are key to understanding the functional regulation of CorA.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Transporte Biológico , Espectroscopia de Ressonância Magnética , Modelos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
17.
Nat Commun ; 13(1): 7073, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400768

RESUMO

The binding of intrinsically disordered proteins to globular ones can require the folding of motifs into α-helices. These interactions offer opportunities for therapeutic intervention but their modulation with small molecules is challenging because they bury large surfaces. Linear peptides that display the residues that are key for binding can be targeted to globular proteins when they form stable helices, which in most cases requires their chemical modification. Here we present rules to design peptides that fold into single α-helices by instead concatenating glutamine side chain to main chain hydrogen bonds recently discovered in polyglutamine helices. The resulting peptides are uncharged, contain only natural amino acids, and their sequences can be optimized to interact with specific targets. Our results provide design rules to obtain single α-helices for a wide range of applications in protein engineering and drug design.


Assuntos
Glutamina , Peptídeos , Conformação Proteica em alfa-Hélice , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Peptídeos/química
18.
Biophys J ; 101(11): 2782-9, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22261067

RESUMO

The dynamical basis underlying the increased thermal stability of thermophilic proteins remains uncertain. Here, we challenge the new paradigm established by neutron scattering experiments in solution, in which the adaptation of thermophilic proteins to high temperatures lies in the lower sensitivity of their flexibility to temperature changes. By means of a combination of molecular dynamics and Brownian dynamics simulations, we report a reinterpretation of those experiments and show evidence that under crowding conditions, such as in vivo, thermophilic and homolog mesophilic proteins have diffusional properties with different thermal behavior.


Assuntos
L-Lactato Desidrogenase/metabolismo , Substâncias Macromoleculares/metabolismo , Malato Desidrogenase/metabolismo , Mathanococcus/enzimologia , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Temperatura , Animais , Simulação por Computador , Difusão , Modelos Moleculares , Coelhos , Eletricidade Estática
19.
PLoS Comput Biol ; 6(4): e1000738, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20386738

RESUMO

N-acetyl-L-glutamate kinase (NAGK) is the structural paradigm for examining the catalytic mechanisms and dynamics of amino acid kinase family members. Given that the slow conformational dynamics of the NAGK (at the microseconds time scale or slower) may be rate-limiting, it is of importance to assess the mechanisms of the most cooperative modes of motion intrinsically accessible to this enzyme. Here, we present the results from normal mode analysis using an elastic network model representation, which shows that the conformational mechanisms for substrate binding by NAGK strongly correlate with the intrinsic dynamics of the enzyme in the unbound form. We further analyzed the potential mechanisms of allosteric signalling within NAGK using a Markov model for network communication. Comparative analysis of the dynamics of family members strongly suggests that the low-frequency modes of motion and the associated intramolecular couplings that establish signal transduction are highly conserved among family members, in support of the paradigm sequence-->structure-->dynamics-->function.


Assuntos
Biologia Computacional/métodos , Simulação de Dinâmica Molecular , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Regulação Alostérica , Anisotropia , Domínio Catalítico , Cadeias de Markov , Distribuição Normal , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
20.
Polymers (Basel) ; 13(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419008

RESUMO

We study self-association of ubiquitin and the disordered protein ACTR using the most commonly used water models. We find that dissociation events are found only with TIP4P-EW and TIP4P/2005, while the widely used TIP3P water model produces straightforward aggregation of the molecules due to the absence of dissociation events. We also find that TIP4P/2005 is the only water model that reproduces the fast association/dissociation dynamics of ubiquitin and best identifies its binding surface. Our results show the critical role of the water model in the description of protein-protein interactions and binding.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa