Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Eng ; 74: 98-107, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244545

RESUMO

Rising concerns about climate change and sustainable energy have attracted efforts towards developing environmentally friendly alternatives to fossil fuels. Biosynthesis of n-butane, a highly desirable petro-chemical, fuel additive and diluent in the oil industry, remains a challenge. In this work, we first engineered enzymes Tes, Car and AD in the termination module to improve the selectivity of n-butane biosynthesis, and ancestral reconstruction and a synthetic RBS significantly improved the AD abundance. Next, we did ribosome binding site (RBS) calculation to identify potential metabolic bottlenecks, and then mitigated the bottleneck with RBS engineering and precursor propionyl-CoA addition. Furthermore, we employed a model-assisted strain design and a nonrepetitive extra-long sgRNA arrays (ELSAs) and quorum sensing assisted CRISPRi to facilitate a dynamic two-stage fermentation. Through systems engineering, n-butane production was increased by 168-fold from 0.04 to 6.74 mg/L. Finally, the maximum n-butane production from acetate was predicted using parsimonious flux balance analysis (pFBA), and we achieved n-butane production from acetate produced by electrocatalytic CO reduction. Our findings pave the way for selectively producing n-butane from renewable carbon source.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Butanos/metabolismo , Acetatos/metabolismo
2.
J Biol Chem ; 295(27): 9171-9182, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32434927

RESUMO

Bacterial dormancy can take many forms, including formation of Bacillus endospores, Streptomyces exospores, and metabolically latent Mycobacterium cells. In the actinobacteria, including the streptomycetes and mycobacteria, the rapid resuscitation from a dormant state requires the activities of a family of cell-wall lytic enzymes called resuscitation-promoting factors (Rpfs). Whether Rpf activity promotes resuscitation by generating peptidoglycan fragments (muropeptides) that function as signaling molecules for spore germination or by simply remodeling the dormant cell wall has been the subject of much debate. Here, to address this question, we used mutagenesis and peptidoglycan binding and cleavage assays to first gain broader insight into the biochemical function of diverse Rpf enzymes. We show that their LysM and LytM domains enhance Rpf enzyme activity; their LytM domain and, in some cases their LysM domain, also promoted peptidoglycan binding. We further demonstrate that the Rpfs function as endo-acting lytic transglycosylases, cleaving within the peptidoglycan backbone. We also found that unlike in other systems, Rpf activity in the streptomycetes is not correlated with peptidoglycan-responsive Ser/Thr kinases for cell signaling, and the germination of rpf mutant strains could not be stimulated by the addition of known germinants. Collectively, these results suggest that in Streptomyces, Rpfs have a structural rather than signaling function during spore germination, and that in the actinobacteria, any signaling function associated with spore resuscitation requires the activity of additional yet to be identified enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Citocinas/metabolismo , Streptomyces/metabolismo , Actinobacteria/metabolismo , Proteínas de Bactérias/fisiologia , Citocinas/fisiologia , Endopeptidases/metabolismo , Mycobacterium tuberculosis/metabolismo , Peptidoglicano/metabolismo , Esporos Bacterianos/metabolismo
3.
Microbiology (Reading) ; 167(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33945461

RESUMO

ARC2 is a synthetic compound, related in structure and mechanism to the antibiotic triclosan, that activates the production of many specialized metabolites in the Streptomyces genus of bacteria. In this work, we demonstrate that the addition of ARC2 to Streptomyces coelicolor cultures results in considerable alterations in overall gene expression including most notably the specialized metabolic genes. Using actinorhodin production as a model system, we show that the effect of ARC2 depends on the pleiotropic regulators afsR and afsS but not afsK. We find that the constitutive expression of afsS can bypass the need for afsR but not the reverse, while the constitutive expression of afsK had no effect on actinorhodin production. These data are consistent with a model in which ARC2 activates a cell stress response that depends on AfsR activating the expression of the afsS gene such that AfsS then triggers the production of actinorhodin.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Streptomyces coelicolor/efeitos dos fármacos , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/metabolismo , Triclosan/farmacologia , Antraquinonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Genes Reguladores , Streptomyces coelicolor/genética , Fatores de Transcrição/genética
4.
ACS Synth Biol ; 9(6): 1284-1291, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32485106

RESUMO

Synthetic biology is enabling rapid advances in the areas of biomanufacturing and live therapeutics. Dynamic circuits that can be used to regulate cellular resources and microbial community behavior represent a defining focus of synthetic biology, and have attracted tremendous interest. However, the existing dynamic circuits are mostly gene editing-dependent or cell lysis-based, which limits their broad and convenient application, and in some cases, such lysis-based circuits can suffer from genetic instability due to evolution. There is limited research in quorum sensing-assisted CRISPRi, which can function in a gene editing-independent manner. Here, we constructed a series of quorum sensing controlled CRISPRi systems (Q-CRISPRi), which can dynamically program bacteria by using customized sgRNA without introducing cell lysis. We successfully applied Q-CRISPRi circuits to dynamically program gene expression, population density, phenotype, physical property, and community composition of microbial consortia. The strategies reported here represent methods for dynamic cell programming and could be effective in programming industrially and medically important microorganisms to offer better control of their metabolism and behavior.


Assuntos
Sistemas CRISPR-Cas/genética , Percepção de Quorum/genética , Biologia Sintética/métodos , Antibacterianos/farmacologia , Replicação do DNA/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa