Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 29(20): 204001, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29480169

RESUMO

Silicon nanowires (SiNWs) are considered as potential chemical sensors due to their large surface-to-volume ratio and their possible integration into arrays for nanotechnological applications. Detection of harmful gases like CO has been experimentally demonstrated, however, the influence of doping on the sensing capacity of SiNWs has not yet been reported. For this work, we theoretically studied the surface adsorption of a CO molecule on hydrogen-passivated SiNWs grown along the [111] crystallographic direction and compared it with the adsorption of other molecules such as NO, and O2. Three nanowire diameters and three dopant elements (B, Al and Ga) were considered, and calculations were done within the density functional theory framework. The results indicate that CO molecules are more strongly adsorbed on the doped SiNW than on the pristine SiNW. The following trend was observed for the CO adsorption energies: E A[B-doped] > E A[Al-doped] > E A[Ga-doped] > E A[undoped], for all diameters. The electronic charge transfers between the SiNWs and the adsorbed CO were estimated by using a Voronoi population analysis. The CO adsorbed onto the undoped SiNWs has an electron-acceptor character, while the CO adsorbed onto the B-, Al-, and Ga-doped SiNWs exhibits an electron-donor character. Comparing these results with the ones obtained for the NO and O2 adsorption, the larger CO adsorption energy on B-doped SiNWs indicates their good selectivity towards CO. These results suggest that SiNW-based sensors of toxic gases could represent a clear and advantageous application of nanotechnology in the improvement of human quality of life.

2.
Nanotechnology ; 29(15): 154004, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29372891

RESUMO

Semiconductor nanowire arrays promise rapid development of a new generation of lithium (Li) batteries because they can store more Li atoms than conventional crystals due to their large surface areas. During the charge-discharge process, the electrodes experience internal stresses that fatigue the material and limit the useful life of the battery. The theoretical study of electronic and mechanical properties of lithiated nanowire arrays allows the designing of electrode materials that could improve battery performance. In this work, we present a density functional theory study of the electronic band structure, formation energy, binding energy, and Young's modulus (Y) of hydrogen passivated germanium nanowires (H-GeNWs) grown along the [111] and [001] crystallographic directions with surface and interstitial Li atoms. The results show that the germanium nanowires (GeNWs) with surface Li atoms maintain their semiconducting behavior but their energy gap size decreases when the Li concentration grows. In contrast, the GeNWs can have semiconductor or metallic behavior depending on the concentration of the interstitial Li atoms. On the other hand, Y is an indicator of the structural changes that GeNWs suffer due to the concentration of Li atoms. For surface Li atoms, Y stays almost constant, whereas for interstitial Li atoms, the Y values indicate important structural changes in the GeNWs.

3.
J Mol Model ; 25(11): 338, 2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31705205

RESUMO

In this work, we present a theoretical study of the electronic band structure and the Young's modulus of hydrogen-passivated silicon nanowires (H-SiNWs), grown along the [110] crystallographic direction, as a function of the concentration of interstitial sodium (Na) and lithium (Li) atoms. The study is performed using the supercell scheme and the density functional theory (DFT), within the local density approximation (LDA). The results show that the presence of Na or Li atoms closes the former semiconducting band gap of the H-SiNWs and shifts the Fermi energy into the conduction band. The transition from semiconductor to metal occurs as soon as a single Na or Li atom is added to the nanowire and the number of occupied states near the Fermi level is larger for the H-SiNWs with Li atoms in comparison with those nanowires with the same concentration of Na atoms. The calculated formation energies reveal that the system becomes less stable when the concentration of Na and Li atoms augments. Moreover, the obtained binding energies indicate that Si-Li and Si-Na bonds are formed. It is worth mentioning that the binding energies of H-SiNWs with interstitial Li atoms are larger than those corresponding to the H-SiNWs with interstitial Na atoms. On the other hand, the Young's moduli of H-SiNWs with Na atoms are lower than those of pure H-SiNWs and their values diminish when the concentration of Na atoms increases. In contrast, Young's moduli of H-SiNWs present a non-monotonic behavior as a function of the concentration of interstitial Li atoms and for the largest studied concentration the nanowire fractures. These results give insight into the changes that electronic and mechanical properties of H-SiNWs suffer during the charge-discharge process, which should be taken into account in the design of electrodes of Na or Li-ion batteries.

4.
J Phys Condens Matter ; 31(42): 425303, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31252420

RESUMO

This work studied the phonon confinement effects at the low temperature specific heat of Si nanowires from first principles using density functional perturbation theory. The nanowires were modeled in the [0 0 1] direction for three different diameters, with the largest cross section being approximately 10 Å. The results indicate the specific heat can be described at low temperatures using a third-grade polynomial of the form c v = λT + ßT 2 + γT3, where the coefficients of quadratic and cubic terms are almost nonexistent for small diameters. These terms begin to have relevance at larger diameters. Further analysis shows λ > ß > γ, which shows the phonon confinement (λ) and surface atoms (ß) become more important than the volumetric contribution (γ) for ultrathin nanowires at low temperatures.

5.
Dalton Trans ; 47(22): 7505-7514, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29789836

RESUMO

Theoretical studies on the effect of Li on the electronic properties of porous silicon are still scarce; these studies could help us in the development of Li-ion batteries of this material which overcomes some limitations that bulk silicon has. In this work, the effect of interstitial and surface Li on the electronic properties of porous Si is studied using the first-principles density functional theory approach and the generalised gradient approximation. The pores are modeled by removing columns of atoms of an otherwise perfect Si crystal, dangling bonds of all surfaces are passivated with H atoms, and then Li is inserted on interstitial positions on the pore wall and compared with the replacement of H atoms with Li. The results show that the interstitial Li creates effects similar to n-type doping where the Fermi level is shifted towards the conduction band with band crossings of the said level thus acquiring metallic characteristics. The surface Li introduces trap-like states in the electronic band structures which increase as the number of Li atom increases with a tendency to become metallic. These results could be important for the application of porous Si nanostructures in Li-ion batteries technology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa