Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 301(1): H164-72, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21551274

RESUMO

Aging and obesity both have a significant impact on central blood pressure (BP) regulation, and previous studies indicated that changes in central redox signaling with age may affect high-fat (HF) diet-induced cardiovascular responses. Therefore, we investigated the effects of 60% HF feeding on BP regulation in young adult (5 mo) and old (26 mo) Fischer-344 × Brown-Norway rats. Radiotelemetric transmitters were implanted to measure BP, heart rate (HR), locomotor activity, and spontaneous baroreflex sensitivity. Expression and activity of NADPH oxidase and ANG II type 1 receptor were assessed in the hypothalamus and in the nucleus tractus solitarii. Old animals gained more weight on HF diet compared with young, whereas central NADPH oxidase expression and activity elevated similarly in the two age groups. After an initial hypotensive and tachycardic response during the first week of HF feeding, BP in young animals increased and became significantly elevated after 6 wk of HF feeding. In contrast, BP in old animals remained depressed. Nighttime HR and locomotor activity decreased in both young and old rats fed with HF diet, but these changes were more significant in young rats. As a result, amplitudes of circadian variation of BP, HR, and activity that were originally higher in young rats declined significantly and became similar in the two age groups. In conclusion, our experiments led to the surprising finding that HF diet has a more serious impact on cardiovascular regulation in young animals compared with old.


Assuntos
Envelhecimento/fisiologia , Gorduras na Dieta , Hipertensão/fisiopatologia , Obesidade/fisiopatologia , Animais , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Western Blotting , Peso Corporal/fisiologia , Colesterol/sangue , Dieta , Frequência Cardíaca/fisiologia , Hipertensão/etiologia , Hipotálamo/metabolismo , Masculino , Atividade Motora/fisiologia , NADPH Oxidases/metabolismo , Obesidade/etiologia , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Receptor Tipo 1 de Angiotensina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Núcleo Solitário/fisiologia , Telemetria
2.
J Hypertens ; 25(12): 2471-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17984669

RESUMO

OBJECTIVE: The present study employed a rat leptin antagonist to evaluate the role of elevated leptin in obesity-associated hypertension. METHODS: First, leptin was overexpressed in the hypothalamus of lean rats for 155 days through the administration of a recombinant adeno-associated viral-mediated central vector-encoding leptin. Then a leptin antagonist was infused intracerebroventricularly for 14 days. In a second experiment, rats were fed with a high-fat diet or chow for 5 months, then the leptin antagonist was infused intracerebroventricularly for 14 days. RESULTS: Hypothalamic overexpression of leptin elevated blood pressure by 18 mmHg, but 14-day central infusion of the leptin antagonist reversed leptin-induced hypertension. High-fat feeding increased blood pressure (by approximately 8-9 mmHg) and tyrosine hydroxylase activity (by 76%) in superior cervical ganglia compared with chow feeding. Leptin antagonist infusion accelerated weight gain, food intake, and adiposity in high-fat-fed rats compared with chow-fed rats, and tyrosine hydroxylase activity was also reversed in the superior cervical ganglia. Elevated mean arterial pressure was not affected, although there was a small decrease in heart rate in both chow and high-fat-fed groups. CONCLUSION: Central overexpression of leptin leads to hypertension that can be reversed by a leptin antagonist. In contrast, this leptin antagonist does not reverse the high-fat feeding-induced elevation of blood pressure, even though there is apparent blockade of other leptin-mediated metabolic and sympatho-excitatory responses.


Assuntos
Hipertensão/tratamento farmacológico , Leptina/antagonistas & inibidores , Animais , Dependovirus/genética , Gorduras na Dieta/administração & dosagem , Expressão Gênica , Vetores Genéticos , Hipertensão/complicações , Hipertensão/fisiopatologia , Hipotálamo/fisiopatologia , Injeções Intraventriculares , Leptina/análogos & derivados , Leptina/genética , Leptina/fisiologia , Masculino , Mutagênese Sítio-Dirigida , Obesidade/complicações , Fosforilação , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
3.
J Hypertens ; 28(6): 1298-306, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20308921

RESUMO

OBJECTIVE: We investigated the effect of age on cardiovascular responses mediated by central angiotensin II (AngII) after intracerebroventricular infusion of AngII, and during restraint stress. METHODS: Blood pressure (BP) and heart rate (HR) of young (5-month-old) and old (27-month-old) male Fischer-344 x Brown-Norway rats were measured using radiotelemetry. AngII was infused intracerebroventricularly using osmotic minipumps (10 ng/0.5 microl/h for 11 days). BP and HR responses to stress were evaluated by placing animals in restrainers for 20 min before and after intracerebroventricular infusion of the AngII-type-1 receptor inhibitor losartan (15 microg/microl per h for 3 days). RESULTS: Resting BP was significantly elevated and HR was significantly lower in old rats compared with young. AngII-induced BP increase was markedly reduced in old rats, but HR responses were similar. Diurnal variation of both BP and HR was lower in old animals, and AngII reduced the amplitude of BP variation in young rats, but not in old. Restraint stress-induced BP and HR elevations were reduced with age. BP responses were diminished by central losartan infusion in both young and old, but this effect was more significant in young rats. In addition, expression of CuZn-superoxide dismutase and catalase declined significantly with age in the hypothalamus, whereas baseline oxidative stress increased. In contrast, AngII-induced increase in hypothalamic oxidative stress decreased with age. CONCLUSION: This study demonstrates that the role of central AngII diminishes with age in the regulation of BP both during baseline conditions and during stress, whereas the involvement of AngII in the regulation of HR remains unaffected.


Assuntos
Envelhecimento/fisiologia , Angiotensina II/administração & dosagem , Hipertensão/induzido quimicamente , Imobilização , Estresse Fisiológico , Angiotensina II/efeitos adversos , Animais , Sequência de Bases , Pressão Sanguínea , Primers do DNA , Espectroscopia de Ressonância de Spin Eletrônica , Frequência Cardíaca , Locomoção , Masculino , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Hypertens Res ; 32(11): 983-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19713964

RESUMO

We examined the effect of high-fat (HF) feeding on blood pressure (BP) regulation, including hypothalamic redox signaling, as well as the changes in diurnal patterns and responses to restraint stress. Furthermore, we investigated whether HF feeding affects catecholamine and neuropeptide Y (NPY) biosynthesis in the adrenal medulla. Male obesity-prone Sprague-Dawley rats were fed with standard rat chow or 60% HF diet for 6 months. BP and heart rate (HR) were measured by telemetry, and circadian changes as well as responses to 20 min restraint stress were analyzed. Mean arterial BP was significantly elevated in HF rats both during daytime and nighttime compared with controls, whereas HR was elevated only during the day. BP and HR increased similarly in response to stress in both experimental groups; however, post-stress recovery of BP and HR were significantly delayed in HF animals. Protein levels of angiotensin II type 1 receptor (AT(1)) and NOX2, p67(phox) and p47(phox) subunits of NADPH oxidase, as well as NADPH oxidase activity increased significantly in the hypothalamus with HF feeding, whereas levels of antioxidant enzymes and nitric oxide synthases remained unchanged. In addition, HF diet also elevated the adrenomedullary protein levels of tyrosine hydroxylase and NPY. This study shows that feeding obesity-prone Sprague-Dawley rats with a HF diet results in elevated BP and HR and delayed cardiovascular post-stress recovery, and that these changes are paralleled by increases in the expression and activity of NADPH oxidase in the hypothalamus without a compensatory increase in the antioxidant enzyme levels, possibly leading to superoxide-mediated sympathoexcitation and hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Gorduras na Dieta/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Transdução de Sinais/fisiologia , Medula Suprarrenal/efeitos dos fármacos , Angiotensina II/metabolismo , Angiotensina II/fisiologia , Animais , Northern Blotting , Western Blotting , Catecolaminas/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo I/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Oxirredução , Ratos , Ratos Sprague-Dawley , Restrição Física , Estresse Psicológico/fisiopatologia , Telemetria , Tirosina 3-Mono-Oxigenase/biossíntese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa