Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(6): 2057-2062, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38285001

RESUMO

Hyperbolic polaritons have been attracting increasing interest for applications in optoelectronics, biosensing, and super-resolution imaging. Here, we report the in-plane hyperbolic exciton polaritons in monolayer black-arsenic (B-As), where hyperbolicity arises strikingly from two exciton resonant peaks. Remarkably, the presence of two resonances at different momenta makes overall hyperbolicity highly tunable by strain, as the two exciton peaks can be merged into the same frequency to double the strength of hyperbolicity as well as light absorption under a 1.5% biaxial strain. Moreover, the frequency of the merged hyperbolicity can be further tuned from 1.35 to 0.8 eV by an anisotropic biaxial strain. Furthermore, electromagnetic numerical simulation reveals a strain-induced hyperbolicity, as manifested in a topological transition of iso-frequency contour of exciton polaritons. The good tunability, large exciton binding energy, and strong light absorption exhibited in the hyperbolic monolayer B-As make it highly suitable for nanophotonics applications under ambient conditions.

2.
J Am Chem Soc ; 146(20): 14105-14113, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717019

RESUMO

The recent revolution in the superconductivity field stems from hydride superconductors. Multicomponent hydrides provide a crucial platform for tracking high-temperature superconductors. Besides high superconducting transition temperature (Tc), achieving both giant upper critical magnetic field [µ0Hc2(0)] and high critical current density [Jc(0)] is also key to the latent potential of the application for hydride superconductors. In this work, we have successfully synthesized quaternary La-Y-Ce hydrides with excellent properties under moderate pressure by using the concept of "entropy engineering." The obtained temperature dependence of the resistance provides evidence for the superconductivity of Fm3m-(La,Y,Ce)H10, with the maximum Tc ∼ 190 K (at 112 GPa). Notably, Fm3m-(La,Y,Ce)H10 boasts exceptional properties: µ0Hc2(0) reaching 292 T and Jc(0) surpassing 4.61 × 107 A/cm2. Compared with the binary LaH10/YH10, we find that the Fm3m structure in (La,Y,Ce)H10 can be stable at relatively low pressures (112 GPa). These results indicate that multicomponent hydrides can significantly enhance the superconducting properties and regulate stabilizing pressure through the application of "entropy engineering." This work stimulates the experimental exploration of multihydride superconductors and also provides a reference for the search of room-temperature superconductors in more diversified hydride materials in the future.

3.
Small ; 20(15): e2306600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009782

RESUMO

2D Bi2O2Se has recently garnered significant attention in the electronics and optoelectronics fields due to its remarkable photosensitivity, broad spectral absorption, and excellent long-term environmental stability. However, the development of integrated Bi2O2Se photodetector with high performance and low-power consumption is limited by material synthesis method and the inherent high carrier concentration of Bi2O2Se. Here, a type-I heterojunction is presented, comprising 2D Bi2O2Se and lead-free bismuth perovskite CsBi3I10, for fast response and broadband detection. Through effective charge transfer and strong coupling effect at the interfaces of Bi2O2Se and CsBi3I10, the response time is accelerated to 4.1 µs, and the detection range is expanded from ultraviolet to near-infrared spectral regions (365-1500 nm). The as-fabricated photodetector exhibits a responsivity of 48.63 AW-1 and a detectivity of 1.22×1012 Jones at 808 nm. Moreover, efficient modulation of the dominant photocurrent generation mechanism from photoconductive to photogating effect leads to sensitive response exceeding 103 AW-1 for heterojunction-based photo field effect transistor (photo-FETs). Utilizing the large-scale growth of both Bi2O2Se and CsBi3I10, the as-fabricated integrated photodetector array demonstrates outstanding homogeneity and stability of photo-response performance. The proposed 2D Bi2O2Se/CsBi3I10 perovskite heterojunction holds promising prospects for the future-generation photodetector arrays and integrated optoelectronic systems.

4.
Small ; 20(5): e2305512, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759410

RESUMO

Transparent nano-polycrystalline diamond (t-NPD) possesses superior mechanical properties compared to single and traditional polycrystalline diamonds. However, the harsh synthetic conditions significantly limit its synthesis and applications. In this study, a synthesis routine is presented for t-NPD under low pressure and low temperature conditions, 10 GPa, 1600 °C and 15 GPa, 1350 °C similar with the synthesis condition of organic precursor. Self-catalyzed hydrogenated carbon nano-onions (HCNOs) from the combustion of naphthalene enable synthesis under nearly industrial conditions, which are like organic precursor and much lower than that of graphite and other carbon allotropes. This is made possible thanks to the significant impact of hydrogen on the thermodynamics, as it chemically facilitates phase transition. Ubiquitous nanotwinned structures are observed throughout t-NPD due to the high concentration of puckered layers and stacking faults of HCNOs, which impart a Vickers hardness about 140 GPa. This high hardness and optical transparency can be attributed to the nanocrystalline grain size, thin intergranular films, absence of secondary phase and pore-free features. The facile and industrial-scale synthesis of the HCNOs precursor, and mild synthesis conditions make t-NPD suitable for a wide range of potential applications.

5.
Inorg Chem ; 63(26): 12248-12254, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38874621

RESUMO

Noble gases with inert chemical properties have rich bonding modes under high pressure. Interestingly, Xe and Xe form covalent bonds, originating from the theoretical simulation of the pressure-induced decomposition of XeF2, which has yet to be experimentally confirmed. Moreover, the structural phase transition and metallization of XeF2 under high pressure have always been controversial. Therefore, we conducted extensive experiments using a laser-heated diamond anvil cell technique to investigate the above issues of XeF2. We propose that XeF2 undergoes a structural phase transition and decomposition above 84.1 GPa after laser heating, and the decomposed product Xe2F contains Xe-Xe covalent bonds. Neither the pressure nor temperature alone could bring about these changes in XeF2. With our UV-vis absorption experiment, I4/mmm-XeF2 was metalized at 159 GPa. This work confirms the existence of Xe-Xe covalent bonds and provides insights into the controversy surrounding XeF2, enriching the research on noble gas chemistry under high pressure.

6.
Phys Chem Chem Phys ; 26(10): 8237-8246, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385503

RESUMO

The recent discovery of high-temperature superconductivity in compressed hydrides has reignited the long-standing quest for room-temperature superconductors. However, the synthesis of superconducting hydrides under moderate pressure and the identification of crucial factors that affect their stability remain challenges. Here, we predicted the ternary clathrate phases of LaThH12 with potential superconductivity under high pressures and specifically proposed a novel R3̄c-LaThH12 phase exhibiting a remarkable Tc of 54.95 K at only 30 GPa to address these confusions. Our first-principles studies show that the high-Tc value of Pm3̄m and Cmmm-LaThH12 phases was induced by the strong electron-phonon coupling driven by the synergy of the electron-phonon matrix element and phonon softening caused by Fermi surface nesting. Importantly, we demonstrate the dual effects of enhanced ionic bonding and expanded orbital hybridization between Th-6f and H-sp3 orbitals during depressurization are primary factors governing the dynamic stability of R3̄c-LaThH12 at low pressures. Our findings offer crucial insights into the underlying mechanisms governing low-pressure stability and provide guidance for experimental efforts aimed at realizing hydrogen-based superconductors with both low synthesis pressures and high-Tc.

7.
Phys Chem Chem Phys ; 26(9): 7371-7376, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38376428

RESUMO

The experimentally discovered FeH5 exhibits a structure built of atomic hydrogen that only has bonding between hydrogen and iron atoms [C. M. Pepin, G. Geneste, A. Dewaele, M. Mezouar and P. Loubeyre, Science, 2017, 357, 382]. However, its superconductivity has remained unsolved since its discovery. In this work, we have synthesized I4/mmm-FeH5 at 139 GPa combined with laser-heating conditions. The electrical resistance measurements at ultrahigh pressures indicate that no evidence of superconducting transition of FeH5 is observed in the temperature range of 1.5 K to 270 K. These results indicate that I4/mmm-FeH5 does not exhibit superconductivity within the experimental temperature range, and the introduction of iron atoms is not beneficial to the formation of the superconducting phase.

8.
Phys Chem Chem Phys ; 26(8): 6774-6781, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323593

RESUMO

High lattice thermal conductivity stemming from the intrinsically ordered crystal and strong interatomic bonds tends to be seen as the bottleneck for achieving excellent thermoelectric properties in full-Heusler (FH) semiconductors. In this work, we propose a novel Li-based FH compound Li2TlSb by substituting one Li atom with a Tl atom in Li3Sb. Then we systematically investigated its transport and thermoelectric properties based on self-consistent phonon (SCP) theory, electron-phonon scattering, and the Boltzmann transport equation. The theoretical calculation confirms that it exhibits outstanding mechanical properties and extreme environment adaptability. Surprisingly, the combination of an unexpectedly high spatial degeneracy and light electron dispersion at valence bands results in a high power factor in p-type systems. Additionally, the rattling behavior governed by the Tl atom and resonant bonding is responsible for ultra-low lattice thermal conductivity with 0.79 W m-1 K-1 at room temperature. Finally, a maximum p-type ZT value of 1.77 at 300 K has been achieved, which surpasses those of most of the traditional thermoelectric (TE) materials. Our results demonstrate that Li2TlSb serves as a potential candidate for room-temperature thermoelectric materials and simultaneously provides new insights for rationally designing novel FH materials in the future.

9.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38445840

RESUMO

The theory-led prediction of LaBeH8, which has a high superconducting critical temperature (Tc) above liquid nitrogen under a pressure level below 1 Mbar, has been experimentally confirmed. YBeH8, which has a structural configuration similar to that of LaBeH8, has also been predicted to be a high-temperature superconductor at high pressure. In this study, we focus on the structural phase transition and superconductivity of YBeH8 under pressure by using first-principles calculations. Except for the known face-centered cubic phase of Fm3̄m, we found a monoclinic phase with P1̄ symmetry. Moreover, the P1̄ phase transforms to the Fm3̄m phase at ∼200 GPa with zero-point energy corrections. Interestingly, the P1̄ phase undergoes a complex electronic phase transition from semiconductor to metal and then to superconducting states with a low Tc of 40 K at 200 GPa. The Fm3̄m phase exhibits a high Tc of 201 K at 200 GPa, and its Tc does not change significantly with pressure. When we combine the method using two coupling constants, λopt and λac, with first-principles calculations, λopt is mainly supplied by the Be-H alloy backbone, which accounts for about 85% of total λ and makes the greatest contribution to the high Tc. These insights not only contribute to a deeper understanding of the superconducting behavior of this ternary hydride but may also guide the experimental synthesis of hydrogen-rich compounds.

10.
Inorg Chem ; 62(29): 11626-11632, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37431752

RESUMO

Access to new superconducting phases in transition-metal dichalcogenides (TMDs) via pressure treatment has been the primary target in this field. As equally essential as the fabrication of new superconducting materials at high pressure, maneuvering new superconducting phases at moderate pressures is also one of the core goals in the synthesis community. Here, we successfully reduced the synthesized pressure of the superconducting phase in ReSe2 by combining V-doping and high-pressure techniques, with a reduction in pressure of 50% in contrast to ReSe2. Our electrical transport measurements displayed that metallization appeared at 10 GPa and subsequently superconductivity appeared at about 52.4 GPa with Tc ∼ 1.9 K. There was a giant reduction in the stable pressure of the superconducting phase derived from the d-electrons and interlayer interaction changes, as evidenced by the Hall effect and X-ray diffraction measurements. These findings serve as ideal starting points and guidance for designing superconducting TMDs at moderate pressures.

11.
Phys Chem Chem Phys ; 25(6): 5237-5243, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36723263

RESUMO

Compressed hydrogen-rich compounds have received extensive attention as appealing contenders for superconductors. Here, we found several stable hydrides YZrH6, YZrH8, YZr3H16 and YZrH18, and a series of metastable clathrate hexahydrides in the systematic investigation of Y-Zr-H ternary hydrides under pressure. Electron-phonon coupling calculations indicate that they all exhibit high temperature superconductivity and perform better than the binary Zr-H system. YZrH6 can maintain dynamic stability down to ambient pressure and keep a critical temperature (Tc) of 16 K. The stable YZrH18 and metastable Y3ZrH24 with high hydrogen content exhibit high Tc of 156 K and 185 K at 200 GPa, respectively. Further analysis shows that the phonon modes associated with H atoms contribute significantly to the electron-phonon coupling. The hydrogen content and the stoichiometric ratio of Y and Zr closely affect the density of states at the Fermi level, thereby affecting the superconductivity. Our work presents an important step toward understanding the superconductivity and stability of transition metal ternary hydrides.

12.
Phys Chem Chem Phys ; 25(47): 32534-32540, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37997767

RESUMO

The search for high-temperature superconductors in hydrides under high pressure has always been a research hotspot. Hydrogen-based superconductors offer an avenue to achieve the long-sought goal of superconductivity at room temperature. Here we systematically explored the high-pressure phase diagram, electronic properties, lattice dynamics and superconductivity of the ternary Ca-Al-H system using ab initio methods. At 80 GPa, CaAlH5 transforms from Cmcm to P21/m phase. Both of Cmcm-CaAlH5 and Pnnm-CaAl2H8 are semiconductors. At 200 GPa, P4/mmm-CaAlH7 and a metastable compound Immm-Ca2AlH12 were found. Furthermore, P4/mmm-CaAlH7 shows obvious softening of the high frequency vibration modes, which improves the strength of electron-phonon coupling. Therefore, a superconducting transition temperature Tc of 71 K is generated in P4/mmm-CaAlH7 at 50 GPa. In addition, the thermodynamic metastable Immm-Ca2AlH12 exhibits a superconducting transition temperature of 118 K at 250 GPa. These results are very useful for the experimental searching of new high-Tc superconductors in ternary hydrides. Our work may provide an opportunity to search for high Tc superconductors at lower pressure.

13.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110867

RESUMO

Overexpression of the thymidine phosphorylase (TP) enzyme induces angiogenesis, which eventually leads to metastasis and tumor growth. The crucial role of TP in cancer development makes it an important target for anticancer drug discovery. Currently, there is only one US-FDA-approved drug, i.e., Lonsurf, a combination of trifluridine and tipiracil, for the treatment of metastatic colorectal cancer. Unfortunately, numerous adverse effects are associated with its use, such as myelosuppression, anemia, and neutropenia. Since the last few decades, the discovery of new, safe, and effective TP inhibitory agents has been rigorously pursued. In the present study, we evaluated a series of previously synthesized dihydropyrimidone derivatives 1-40 for their TP inhibitory potential. Compounds 1, 12, and 33 showed a good activity with IC50 = 314.0 ± 0.90, 303.5 ± 0.40, and 322.6 ± 1.60 µM, respectively. The results of mechanistic studies revealed that compounds 1, 12, and 33 were the non-competitive inhibitors. These compounds were also evaluated for cytotoxicity against 3T3 (mouse fibroblast) cells and were found to be non-cytotoxic. Finally, the molecular docking suggested the plausible mechanism of non-competitive inhibition of TP. The current study thus identifies some dihydropyrimidone derivatives as potential inhibitors of TP, which can be further optimized as leads for cancer treatment.


Assuntos
Inibidores Enzimáticos , Timidina Fosforilase , Animais , Camundongos , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Descoberta de Drogas
14.
Angew Chem Int Ed Engl ; 62(28): e202304447, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37145118

RESUMO

The aryl-to-vinyl nickel 1,4-migration (1,4-Ni migration) reaction has been reported for the first time. The generated alkenyl Ni species undergo a reductive coupling reaction with unactivated brominated alkanes affording a series of trisubstituted olefins. This tandem reaction exhibits mild conditions, a broad substrate scope, high regioselectivity, and excellent Z/E stereoselectivity. A series of controlled experiments have shown that the critical 1,4-Ni migration process is reversible. In addition, the alkenyl nickel intermediates obtained after migration are highly Z/E stereoselective and do not undergo Z/E isomerization. The obtained trace isomerization products are caused by the instability of the product.

15.
Phys Rev Lett ; 128(4): 047001, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148145

RESUMO

Hydrogen-based superconductors provide a route to the long-sought goal of room-temperature superconductivity, but the high pressures required to metallize these materials limit their immediate application. For example, carbonaceous sulfur hydride, the first room-temperature superconductor made in a laboratory, can reach a critical temperature (T_{c}) of 288 K only at the extreme pressure of 267 GPa. The next recognized challenge is the realization of room-temperature superconductivity at significantly lower pressures. Here, we propose a strategy for the rational design of high-temperature superconductors at low pressures by alloying small-radius elements and hydrogen to form ternary H-based superconductors with alloy backbones. We identify a "fluorite-type" backbone in compositions of the form AXH_{8}, which exhibit high-temperature superconductivity at moderate pressures compared with other reported hydrogen-based superconductors. The Fm3[over ¯]m phase of LaBeH_{8}, with a fluorite-type H-Be alloy backbone, is predicted to be thermodynamically stable above 98 GPa, and dynamically stable down to 20 GPa with a high T_{c}∼185 K. This is substantially lower than the synthesis pressure required by the geometrically similar clathrate hydride LaH_{10} (170 GPa). Our approach paves the way for finding high-T_{c} ternary H-based superconductors at conditions close to ambient pressures.

16.
Inorg Chem ; 61(29): 11046-11056, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35830569

RESUMO

Novel transition-metal borides have attracted considerable attention because they exhibit high stability under extreme conditions. Compared with binary borides, ternary transition-metal borides (TTMBs) exhibit novel boron substructures and diverse properties, which result in excellent designability. In this study, we synthesized the MAB-like (where M = iron, A = molybdenum, and B = boron) phase Fe(MoB)2 using a high-pressure and high-temperature method. Fe(MoB)2 exhibited ferromagnetic metastable characteristics with a saturation magnetization of 8.35 emu/g at room temperature. Microhardness measurement revealed an indentation hardness of 10.72 GPa, which was higher than those of conventional magnetic materials. First-principles calculations revealed excellent mechanical properties, which mainly originated from the strong covalent short B2 chains. Furthermore, magnetism was attributed to the Fe 3d electrons. Numerous d-d hybridizations existed between the Fe 3d eg and Mo 4d orbitals, and the antibonding/nonbonding state difference for up/down-spin electrons in the hybridization orbitals led to the local magnetic moment of Fe(MoB)2. The magnetic anisotropy energy analyses reveal that Fe(MoB)2 prefers the easy magnetization axis along the z direction, and Mo atom acts as a medium to realize the exchange action between two Fe atoms. The B-B and Fe-B bonds were considerably stronger than the Fe-Mo and Mo-B bonds, and Fe(MoB)2 exhibited a class of atomically laminate composed of FeB2 and Mo layers. These results may provide guidance for the design of novel multifunctional TTMBs by adjusting the interactions between binary metal components.

17.
Inorg Chem ; 61(45): 18112-18118, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36315842

RESUMO

Hydrogen-rich compounds have long been considered as one of the hotspot materials for achieving room-temperature superconductivity. We systematically investigate the high-pressure phase diagram of the K-H system and identified two unreported clathrate extreme superhydrides KH20 and KH30, hosting high superconducting transition temperatures (Tc) of 283 and 243 K at 500 GPa, respectively. The extremely high hydrogen content significantly increases H-derived electronic density of states at the Fermi level, constituting the main contributor to participate in electron-phonon coupling thus producing high-Tc. The large electron localizations in the interstitial region of the metal lattice under high pressure effectively assist the dissociation of hydrogen molecular units, forming unique H36 cages. These results offer key insights into the stability and potential high-Tc superconductivity of compressed extreme superhydrides and will further stimulate related research.

18.
Phys Chem Chem Phys ; 24(3): 1898-1899, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35024713

RESUMO

Our paper is concerned with the specific hydrogen compound MoH11. The authors of the Comment advocate investigating the role of umklapp processes (UP). For the hydrogen compounds, the main contribution to the strength of the pairing interaction is provided not by acoustic, but by optical phonons. This key factor leads to a diminishing role of the UP for the compound of interest.

19.
Phys Chem Chem Phys ; 24(21): 13033-13039, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35583230

RESUMO

KSiH3 exhibits 4.1 wt% experimental hydrogen storage capacity and shows reversibility under moderate conditions, which provides fresh impetus to the search for other complex hydrides in the K-Si-H system. Here, we reproduce the stable Fm3̄m phase of K2SiH6 and uncover two denser phases, space groups P3̄m1 and P63mc at ambient pressure, by means of first-principles structure searches. We note that P3̄m1-K2SiH6 has a high hydrogen content of 5.4 wt% and a volumetric density of 88.3 g L-1. Further calculations suggest a favorable dehydrogenation temperature Tdes of -20.1/55.8 °C with decomposition into KSi + K + H2. The higher hydrogen density and appropriate dehydrogenation temperature indicate that K2SiH6 is a promising hydrogen storage material, and our results provide helpful and clear guidance for further experimental studies. We found three further potential hydrogen storage materials stable at high pressure: K2SiH8, KSiH7 and KSiH8. These results suggest the need for further investigations into hydrogen storage materials among such ternary hydrides at high pressure.

20.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4908-4918, 2022 Sep.
Artigo em Zh | MEDLINE | ID: mdl-36164900

RESUMO

With prominent medicinal value, Gelsemium elegans has been overexploited, resulting in the reduction of the wild resource. As a result, artificial cultivation turns out to be a solution. However, this medicinal species is intolerant to low temperature, and thus genes responding to the low temperature are important for the cultivation of this species. Based on the transcriptome database of G. elegans at 4 ℃, 29 differentially expressed GeERF genes were identified. Bioinformatics analysis of 21 GeERF gene sequences with intact open reading frames showed that 12 and 9 of the GeERF proteins respectively clustered in DREB subgroup and ERF subgroup. GeDREB1 A-1-GeERF6 B-1, with molecular weight of 23.78-50.96 kDa and length of 212-459 aa, were all predicted to be hydrophilic and in nucleus. Furthermore, the full-length cDNA sequence of GeERF2B-1 was cloned from the leaves of G. elegans. Subcellular localization suggested that GeERF2B-1 was located in the nucleus. According to the quantitative reverse-transcription PCR(qRT-PCR), GeERF2B-1 showed constitutive expression in roots, stems, and leaves of G. elegans, and the expression was the highest in roots. In terms of the response to 4 ℃ treatment, the expression of GeERF2B-1 was significantly higher than that in the control and peaked at 12 h, suggesting a positive response to low temperature. This study lays a scientific basis for the functional study of GeERF transcription factors and provides gene resources for the improvement of stress resistance of G. elegans.


Assuntos
Regulação da Expressão Gênica de Plantas , Fatores de Transcrição , DNA Complementar , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa