Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 118(5): 1652-1667, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38418388

RESUMO

Potassium (K+), being an essential macronutrient in plants, plays a central role in many aspects. Root growth is highly plastic and is affected by many different abiotic stresses including nutrient deficiency. The Shaker-type K+ channel Arabidopsis (Arabidopsis thaliana) K+ Transporter 1 (AKT1) is responsible for K+ uptake under both low and high external K+ conditions. However, the upstream transcription factor of AKT1 is not clear. Here, we demonstrated that the WRKY6 transcription factor modulates root growth to low potassium (LK) stress in Arabidopsis. WRKY6 showed a quick response to LK stress and also to many other abiotic stress treatments. The two wrky6 T-DNA insertion mutants were highly sensitive to LK treatment, whose primary root lengths were much shorter, less biomass and lower K+ content in roots than those of wild-type plants, while WRKY6-overexpression lines showed opposite phenotypes. A further investigation showed that WRKY6 regulated the expression of the AKT1 gene via directly binding to the W-box elements in its promoter through EMSA and ChIP-qPCR assays. A dual luciferase reporter analysis further demonstrated that WRKY6 enhanced the transcription of AKT1. Genetic analysis further revealed that the overexpression of AKT1 greatly rescued the short root phenotype of the wrky6 mutant under LK stress, suggesting AKT1 is epistatic to WRKY6 in the control of LK response. Further transcriptome profiling suggested that WRKY6 modulates LK response through a complex regulatory network. Thus, this study unveils a transcription factor that modulates root growth under potassium deficiency conditions by affecting the potassium channel gene AKT1 expression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Raízes de Plantas , Potássio , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Potássio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Canais de Potássio
2.
J Biol Chem ; 299(4): 103060, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841482

RESUMO

The mitogen-activated protein kinase kinase kinase 18 (MAPKKK18) has been reported to play a role in abiotic stress priming in long-term abscisic acid (ABA) response including drought tolerance and leaf senescence. However, the upstream transcriptional regulators of MAPKKK18 remain to be determined. Here, we report ABA-responsive element binding factors (ABFs) as upstream transcription factors of MAPKKK18 expression. Mutants of abf2, abf3, abf4, and abf2abf3abf4 dramatically reduced the transcription of MAPKKK18. Our electrophoresis mobility shift assay and dual-luciferase reporter assay demonstrated that ABF2, ABF3, and ABF4 bound to ABA-responsive element cis-elements within the promoter of MAPKKK18 to transactivate its expression. Furthermore, enrichments of the promoter region of MAPKKK18 by ABF2, ABF3, and ABF4 were confirmed by in vivo chromatin immunoprecipitation coupled with quantitative PCR. In addition, we found that mutants of mapkkk18 exhibited obvious delayed leaf senescence. Moreover, a genetic study showed that overexpression of ABF2, ABF3, and ABF4 in the background of mapkkk18 mostly phenocopied the stay-green phenotype of mapkkk18 and, expression levels of five target genes of ABFs, that is, NYE1, NYE2, NYC1, PAO, and SAG29, were attenuated as a result of MAPKKK18 mutation. These findings demonstrate that ABF2, ABF3, and ABF4 act as transcription regulators of MAPKKK18 and also suggest that, at least in part, ABA acts in priming leaf senescence via ABF-induced expression of MAPKKK18.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Senescência Vegetal , Elementos Reguladores de Transcrição , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Senescência Vegetal/genética , Senescência Vegetal/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia
3.
Physiol Plant ; 176(3): e14371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837414

RESUMO

The WRKY transcription factor (TF) genes form a large family in higher plants, with 72 members in Arabidopsis (Arabidopsis thaliana). The gaseous phytohormone ethylene (ET) regulates multiple physiological processes in plants. It is known that 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACSs, EC 4.4.1.14) limit the enzymatic reaction rate of ethylene synthesis. However, whether WRKY TFs regulate the expression of ACSs and/or ACC oxidases (ACOs, EC 1.14.17.4) remains largely elusive. Here, we demonstrated that Arabidopsis WRKY22 positively regulated the expression of a few ACS and ACO genes, thus promoting ethylene production. Inducible overexpression of WRKY22 caused shorter hypocotyls without ACC treatment. A qRT-PCR screening demonstrated that overexpression of WRKY22 activates the expression of several ACS and ACO genes. The promoter regions of ACS5, ACS11, and ACO5 were also activated by WRKY22, which was revealed by a dual luciferase reporter assay. A follow-up chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA) showed that the promoter regions of ACS5 and ACO5 could be bound by WRKY22 directly. Moreover, wrky22 mutants had longer primary roots and more lateral roots than wild type, while WRKY22-overexpressing lines showed the opposite phenotype. In conclusion, this study revealed that WRKY22 acts as a novel TF activating, at least, the expression of ACS5 and ACO5 to increase ethylene synthesis and modulate root development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Regulação da Expressão Gênica de Plantas , Liases , Raízes de Plantas , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/biossíntese , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Liases/genética , Liases/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Regiões Promotoras Genéticas/genética , Carbono-Carbono Liases/metabolismo , Carbono-Carbono Liases/genética , Ativação Transcricional/genética
4.
Development ; 147(16)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32680933

RESUMO

Reactive oxygen species (ROS) and salicylic acid (SA) are two factors regulating leaf senescence and defense against pathogens. However, how a single gene integrates both ROS and SA pathways remains poorly understood. Here, we show that Arabidopsis WRKY55 transcription factor positively regulates ROS and SA accumulation, and thus leaf senescence and resistance against the bacterial pathogen Pseudomonas syringaeWRKY55 is predominantly expressed in senescent leaves and encodes a transcriptional activator localized to nuclei. Both inducible and constitutive overexpression of WRKY55 accelerates leaf senescence, whereas mutants delay it. Transcriptomic sequencing identified 1448 differentially expressed genes, of which 1157 genes are upregulated by WRKY55 expression. Accordingly, the ROS and SA contents in WRKY55-overexpressing plants are higher than those in control plants, whereas the opposite occurs in mutants. Moreover, WRKY55 positively regulates defense against P. syringae Finally, we show that WRKY55 activates the expression of RbohD, ICS1, PBS3 and SAG13 by binding directly to the W-box-containing fragments. Taken together, our work has identified a new WRKY transcription factor that integrates both ROS and SA pathways to regulate leaf senescence and pathogen resistance.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Fatores de Transcrição/biossíntese , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Pseudomonas syringae , Fatores de Transcrição/genética
5.
Exp Cell Res ; 417(2): 113229, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35649477

RESUMO

Multiple myeloma (MM) secreted exosomes are essential in MM-related complications such as osteolytic bone lesions and renal failure, but their role and underlying mechanism in cardiac complications has not yet been clarified. Here, we investigated the effects of U266 (a MM cell line) exosomes (U266-exo) on regulating the viability, cell cycle, oxidative stress and apoptosis of H9C2 cells and the role of circ-CACNG2 in these effects. We found that U266-exo coculture significantly inhibited viability and promoted apoptosis of H9C2 cells, and serum exosomes of MM patients harbored high level of circ-CACNG2. The clinical data analyses indicated that circ-CACNG2 was an independent prognostic and diagnostic indicator of MM-related cardiac complications. Also, in vitro experiments showed that circ-CACNG2 inhibited viability and promoted apoptosis of H9C2 cells. RIPA, pull-down assays, dual-luciferase reporter assays, and RNA FISH assays revealed that miR-197-3p could bind to circ-CACNG2 and caspase3 directly. Rescue experiments proved that circ-CACNG2 can increase the expression of caspase3 by binding to and decreasing the expression of miR-197-3p. In conclusion, MM-exosomes could inhibit cardiomyocyte viability and promote apoptosis partially through circ-CACNG2/miR-197-3p/caspase3 axis.


Assuntos
MicroRNAs , Mieloma Múltiplo , Apoptose/genética , Canais de Cálcio , Caspase 3/metabolismo , Proliferação de Células/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Miócitos Cardíacos/metabolismo , RNA Circular/genética
6.
Clin Oral Investig ; 28(1): 29, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147163

RESUMO

OBJECTIVES: Three distinct models were utilized to investigate the combined impacts of serum aldehyde exposure and periodontitis. MATERIALS AND METHODS: We performed a cross-sectional analysis using data from 525 participants in the 2013-2014 National Health and Nutrition Examination Survey (NHANES). The directed acyclic graphs (DAG) were used to select a minimal sufficient adjustment set of variables (MSAs). To investigate the relationship between aldehydes and periodontitis, we established three models including multiple logistic regression model, restricted cubic spline (RCS) model, and Bayesian kernel machine regression (BKMR) model. RESULTS: After taking all covariates into account, the multiple logistic regression model revealed that elevated concentrations of isopentanaldehyde and propanaldehyde were strongly associated with periodontitis (isopentanaldehyde: OR: 2.38, 95% CI: 1.34-4.23; propanaldehyde: OR: 1.51, 95% CI: 1.08-2.13). Furthermore, the third tertile concentration of isopentanaldehyde was associated with a 2.04-fold increase in the incidence of periodontitis (95% CI: 1.05-3.95) compared to the first tertile concentration, with a P for trend = 0.04. RCS models showed an "L"-shaped relationship between isopentanaldehyde and periodontitis (P for nonlinear association < 0.01), with inflection point of 0.43 ng/mL. BKMR identified a strong connection between mixed aldehydes and periodontitis, with isopentanaldehyde exhibiting the greatest posterior inclusion probability (PIP) with 0.901 and propanaldehyde exhibiting a PIP with 0.775. CONCLUSIONS: Isopentanaldehyde and propanaldehyde are positively associated with the risk of periodontitis. CLINICAL RELEVANCE: Periodontitis may be associated with exposure to mixed aldehyde. This study emphasizes the important role of aldehydes in primary prevention of periodontitis.


Assuntos
Aldeídos , Periodontite , Humanos , Teorema de Bayes , Estudos Transversais , Inquéritos Nutricionais , Aldeídos/efeitos adversos , Periodontite/epidemiologia
7.
J Integr Plant Biol ; 65(4): 967-984, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36519581

RESUMO

Leaf senescence is the final stage of leaf development and appropriate onset and progression of leaf senescence are critical for reproductive success and fitness. Although great progress has been made in identifying key genes regulating leaf senescence and elucidating the underlining mechanisms in the model plant Arabidopsis, there is still a gap to understanding the complex regulatory network. In this study, we discovered that Arabidopsis ANAC087 transcription factor (TF) positively modulated leaf senescence. Expression of ANAC087 was induced in senescing leaves and the encoded protein acted as a transcriptional activator. Both constitutive and inducible overexpression lines of ANAC087 showed earlier senescence than control plants, whereas T-DNA insertion mutation and dominant repression of the ANAC087 delayed senescence rate. A quantitative reverse transcription-polymerase chain reaction (qRT-PCR) profiling showed that the expression of an array of senescence-associated genes was upregulated in inducible ANAC087 overexpression plants including BFN1, NYE1, CEP1, RbohD, SAG13, SAG15, and VPEs, which are involved in programmed cell death (PCD), chlorophyll degradation and reactive oxygen species (ROS) accumulation. In addition, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) assays demonstrated that ANAC087 directly bound to the canonical NAC recognition sequence (NACRS) motif in promoters of its target genes. Moreover, mutation of two representative target genes, BFN1 or NYE1 alleviated the senescence rate of ANAC087-overexpression plants, suggesting their genetic regulatory relationship. Taken together, this study indicates that ANAC087 serves as an important regulator linking PCD, ROS, and chlorophyll degradation to leaf senescence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Senescência Vegetal , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/metabolismo , Clorofila/metabolismo
8.
Plant J ; 105(3): 600-618, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33119146

RESUMO

Senescence is an integrative final stage of plant development that is governed by internal and external cues. The NAM, ATAF1/2, CUC2 (NAC) transcription factor (TF) family is specific to plants and membrane-tethered NAC TFs (MTTFs) constitute a unique and sophisticated mechanism in stress responses and development. However, the function of MTTFs in oilseed rape (Brassica napus L.) remains unknown. Here, we report that BnaNAC60 is an MTTF associated with the endoplasmic reticulum (ER) membrane. Expression of BnaNAC60 was induced during the progression of leaf senescence. Translocation of BnaNAC60 into nuclei was induced by ER stress and oxidative stress treatments. It binds to the NTLBS motif, rather than the canonical NAC recognition site. Overexpression of BnaNAC60 devoid of the transmembrane domain, but not the full-length BnaNAC60, induces significant reactive oxygen species (ROS) accumulation and hypersensitive response-like cell death in both tobacco (Nicotiana benthamiana) and oilseed rape protoplasts. Moreover, ectopic overexpression of BnaNAC60 devoid of the transmembrane domain, but not the full-length BnaNAC60, in Arabidopsis also induces precocious leaf senescence. Furthermore, screening and expression profiling identified an array of functional genes that are significantly induced by BnaNAC60 expression. Further it was found that BnaNAC60 can activate the promoter activities of BnaNYC1, BnaRbohD, BnaBFN1, BnaZAT12, and multiple BnaVPEs in a dual-luciferase reporter assay. Electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative PCR assays revealed that BnaNAC60 directly binds to the promoter regions of these downstream target genes. To summarize, our data show that BnaNAC60 is an MTTF that modulates cell death, ROS accumulation, and leaf senescence.


Assuntos
Brassica napus/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Apoptose , Arabidopsis/genética , Arabidopsis/fisiologia , Brassica napus/citologia , Brassica napus/efeitos dos fármacos , Membrana Celular/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Células Vegetais , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/citologia , Nicotiana/genética
9.
Arch Virol ; 167(2): 493-499, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34997320

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating infectious diseases in the global swine industry. A rapid and sensitive on-site detection method for PRRS virus (PRRSV) is critically important for diagnosing PRRS. In this study, we established a method that combines reverse transcription recombinase polymerase amplification (RT-RPA) with a lateral flow dipstick (LFD) for detecting North American PRRSV (PRRSV-2). The primers and probe were designed based on the conserved region of all complete PRRSV-2 genomic sequences available in China (n = 512) from 1996 to 2020. The detection limit of the assay was 5.6 × 10-1 median tissue culture infection dose (TCID50) per reaction within 30 min at 42 °C, which was more sensitive than that of reverse transcription polymerase chain reaction (RT-PCR) (5.6 TCID50 per reaction). The assay was highly specific for the epidemic lineages of PRRSV-2 in China and did not cross-react with pseudorabies virus, porcine circovirus 2, classical swine fever virus, or porcine epidemic diarrhea virus. The assay performance was evaluated by testing 179 samples and comparing the results with those of quantitative RT-PCR (RT-qPCR). The results showed that the detection coincidence rate of RT-RPA and RT-qPCR was 100% when the cycle threshold values of RT-qPCR were < 32. The assay provides a new alternative for simple and reliable detection of PRRSV-2 and has great potential for application in the field.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Recombinases , Transcrição Reversa , Sensibilidade e Especificidade , Suínos
10.
Plant J ; 104(1): 171-184, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32634860

RESUMO

Leaf senescence represents the final stage of leaf growth and development, and its onset and progression are strictly regulated; however, the underlying regulatory mechanisms remain largely unknown. In this study we found that WRKY42 was highly induced during leaf senescence. Loss-of-function wrky42 mutants showed delayed leaf senescence whereas the overexpression of WRKY42 accelerated senescence. Transcriptome analysis revealed 2721 differentially expressed genes between wild-type and WRKY42-overexpressing plants, including genes involved in salicylic acid (SA) and reactive oxygen species (ROS) synthesis as well as several senescence-associated genes (SAGs). Moreover, WRKY42 activated the transcription of isochorismate synthase 1 (ICS1), respiratory burst oxidase homolog F (RbohF) and a few SAG genes. Consistently, the expression of these genes was reduced in wrky42 mutants but was markedly increased in transgenic Arabidopsis overexpressing WRKY42. Both in vitro electrophoretic mobility shift assays (EMSAs) and in vivo chromatin immunoprecipitation and dual luciferase assays demonstrated that WRKY42 directly bound to the promoters of ICS1 and RbohF, as well as a few SAGs, to activate their expression. Genetic analysis further showed that mutations of ICS1 and RbohF suppressed the early senescence phenotype evoked by WRKY42 overexpression. Thus, we have identified WRKY42 as a novel transcription factor positively regulating leaf senescence by directly activating the transcription of ICS1, RbohF and SAGs, without any seed yield penalty.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Fatores de Transcrição/fisiologia , Envelhecimento/genética , Envelhecimento/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Folhas de Planta/fisiologia , Fatores de Transcrição/metabolismo
11.
BMC Genomics ; 22(1): 731, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625025

RESUMO

BACKGROUND: Trees such as Populus are planted extensively for reforestation and afforestation. However, their successful establishment greatly depends upon ambient environmental conditions and their relative resistance to abiotic and biotic stresses. Polyphenol oxidase (PPO) is a ubiquitous metalloproteinase in plants, which plays crucial roles in mediating plant resistance against biotic and abiotic stresses. Although the whole genome sequence of Populus trichocarpa has long been published, little is known about the PPO genes in Populus, especially those related to drought stress, mechanical damage, and insect feeding. Additionally, there is a paucity of information regarding hormonal responses at the whole genome level. RESULTS: A genome-wide analysis of the poplar PPO family was performed in the present study, and 18 PtrPPO genes were identified. Bioinformatics and qRT-PCR were then used to analyze the gene structure, phylogeny, chromosomal localization, gene replication, cis-elements, and expression patterns of PtrPPOs. Sequence analysis revealed that two-thirds of the PtrPPO genes lacked intronic sequences. Phylogenetic analysis showed that all PPO genes were categorized into 11 groups, and woody plants harbored many PPO genes. Eighteen PtrPPO genes were disproportionally localized on 19 chromosomes, and 3 pairs of segmented replication genes and 4 tandem repeat genomes were detected in poplars. Cis-acting element analysis identified numerous growth and developmental elements, secondary metabolism processes, and stress-related elements in the promoters of different PPO members. Furthermore, PtrPPO genes were expressed preferentially in the tissues and fruits of young plants. In addition, the expression of some PtrPPOs could be significantly induced by polyethylene glycol, abscisic acid, and methyl jasmonate, thereby revealing their potential role in regulating the stress response. Currently, we identified potential upstream TFs of PtrPPOs using bioinformatics. CONCLUSIONS: Comprehensive analysis is helpful for selecting candidate PPO genes for follow-up studies on biological function, and progress in understanding the molecular genetic basis of stress resistance in forest trees might lead to the development of genetic resources.


Assuntos
Catecol Oxidase , Proteínas de Plantas/genética , Populus , Catecol Oxidase/genética , Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Populus/enzimologia , Populus/genética , Estresse Fisiológico
12.
Cancer Cell Int ; 21(1): 311, 2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120606

RESUMO

INTRODUCTION: Myocardial damage is a mostly incurable complication of multiple myeloma (MM) that seriously affects the treatment outcome and quality of life of patients. Exosomal circular RNAs (exo-circRNAs) play an important role in tumor occurrence and development and are considered key factors in MM pathogenesis. However, the role and mechanism of action of exo-circRNAs in MM-related myocardial damage are still unclear. This study aimed to investigate correlations between exo-circRNAs and MM and to preliminarily explore the role of exo-circRNAs in MM-related myocardial damage. METHODS: Six MM patients and five healthy controls (HCs) were included in the study. High-throughput sequencing and qRT-PCR verification were used to obtain a profile of abnormally expressed exo-circRNAs. GO, KEGG, miRanda, TargetScan and Metascape were used for bioinformatics analyses. H9C2 cells treated with exosomes from U266 cells were used in cell experiments. CCK-8, PCR, immunofluorescence and western blotting assays were used to detect cell proliferation and expression of autophagy-related indicators. Electron microscopy was used to observe the number of autophagic vesicles. RESULTS: Bioinformatics analysis showed that circRNAs with upregulated expression had the potential to promote MM-related myocardial damage. In addition, PCR results confirmed that circ-G042080 was abundantly expressed in the serum exosomes of 20 MM patients. Correlation analysis showed that the expression level of circ-G042080 was positively correlated with the clinical level of MM and MM-related myocardial damage and that circ-G042080 might interfere with MM-related myocardial damage through a downstream miRNA/TLR4 axis. Cell experiments demonstrated that the circ-G042080/hsa-miR-4268/TLR4 axis might exist in H9C2 cells incubated with exosomes and cause abnormal autophagy. CONCLUSION: Abnormal expression of serum exo-circRNAs was found to be associated with MM-related myocardial damage, suggesting that exo-circRNAs might become a new diagnostic marker of MM-related myocardial damage and a therapeutic target.

13.
Bioorg Chem ; 115: 105172, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303898

RESUMO

Two series of tetrahydrocarbazole derivatives have been designed and synthesized based on ZG02, a promising candidate developed in our previous studies. The newly prepared compounds were screened for glucose consumption activity in HepG2 cell lines. Aza-tetrahydrocarbazole compound 12b showed the most potent hypoglycemic activity with a 45% increase in glucose consumption when compared to the solvent control, which had approximately 1.2-fold higher activity than the positive control compounds (metformin and ZG02). An investigation of the potential mechanism indicated that 12b may exhibit hypoglycemic activity via activation of the AMPK pathway. Metabolic stability assays revealed that 12b showed good stability profiles in both artificial gastrointestinal fluids and blood plasma from SD rats. An oral glucose tolerance test (OGTT) was performed and the results further confirmed that 12b was a potent hypoglycemic agent.


Assuntos
Carbazóis/química , Desenho de Fármacos , Hipoglicemiantes/síntese química , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Sítios de Ligação , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Estabilidade de Medicamentos , Glucose/metabolismo , Teste de Tolerância a Glucose , Meia-Vida , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
14.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925110

RESUMO

Poplar are planted extensively in reforestation and afforestation. However, their successful establishment largely depends on the environmental conditions of the newly established plantation and their resistance to abiotic as well as biotic stresses. NF-X1, a widespread transcription factor in plants, plays an irreplaceable role in plant growth, development, and stress tolerance. Although the whole genome sequence of Populus trichocarpa has been published for a long time, little is known about the NF-X1 genes in poplar, especially those related to drought stress, mechanical damage, insect feeding, and hormone response at the whole genome level. In this study, whole genome analysis of the poplar NF-X1 family was performed, and 4 PtrNF-X1 genes were identified. Then, bioinformatics analysis and qRT-PCR were applied to analyze the gene structure, phylogeny, chromosomal localization, gene replication, Cis-elements, and expression patterns of PtrNF-X1genes. Sequence analysis revealed that one-quarter of the PtrNF-X1 genes did not contain introns. Phylogenetic analysis revealed that all NF-X1 genes were split into three subfamilies. The number of two pairs of segmented replication genes were detected in poplars. Cis-acting element analysis identified a large number of elements of growth and development and stress-related elements on the promoters of different NF-X1 members. In addition, some PtrNF-X1 could be significantly induced by polyethylene glycol (PEG) and abscisic acid (ABA), thus revealing their potential role in regulating stress response. Comprehensive analysis is helpful in selecting candidate NF-X1 genes for the follow-up study of the biological function, and molecular genetic progress of stress resistance in forest trees provides genetic resources.


Assuntos
Genes de Plantas , Proteínas de Plantas/genética , Populus/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Cromossomos de Plantas/genética , Evolução Molecular , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Oryza/genética , Filogenia , Populus/crescimento & desenvolvimento , Especificidade da Espécie , Estresse Fisiológico/genética , Sintenia
15.
Bull Environ Contam Toxicol ; 107(6): 1012-1021, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34417845

RESUMO

The study focuses on the white secondary mineral precipitate and its environmental response formed in acid mine drainage (AMD) at Jinduicheng Mine (Shaanxi, China). The mineral composition of white precipitate was characterized by Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), X-ray photoelectron spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Inductively coupled plasma-atomic emission spectrometer (ICP-AES), chemical quantitative calculation and PHREEQC software. The white precipitate was a kind of amorphous crystal with the characteristics of a fine powder, and its main elements were O, Al, S, F, OH- and SO42- groups. Moreover, by comparing the mole number of chemical elements, the main mineral composition of the white precipitate was closest to basaluminite. The geochemical simulation result of the PHREEQC software verified that the white precipitate was basaluminite. According to the analysis of water quality characteristics of water samples, basaluminite can reduce the ions content in the AMD and enrich Cu, Ni, Mo, Cr and F ions, showing an excellent self-purification capacity of the water body. These results are helpful to improve the understanding of secondary mineral and its environmental response, and are of great significance for the environmental protection and sustainable development of mining area.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , China , Minerais/análise , Mineração , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
16.
Biochem Cell Biol ; 97(5): 571-580, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30789795

RESUMO

BACKGROUND: Cardiovascular disease is one of the major threats to human life and health, and vascular aging is an important cause of its occurrence. Antisense non-coding RNA in the INK4 locus (ANRIL) is a kind of long non-coding RNA (lncRNA) that plays important roles in cell senescence. However, the role and mechanism of ANRIL in senescence of vascular smooth muscle cells (VSMCs) are unclear. METHODS: Cell viability and cell cycle were evaluated using an MTT assay and flow cytometry analysis, respectively. Senescence-associated (SA)-ß-galactosidase (gal) staining was used to determine cell senescence. Dual luciferase reporter assays were conducted to confirm the binding of ANRIL and miR-181a, as well as miR-181a and Sirt1. The expression of ANRIL, miR-181a, and Sirt1 was determined using qRT-PCR and protein levels of SA-ß-gal and p53-p21 pathway-related proteins were evaluated by Western blotting. RESULTS: ANRIL and Sirt1 were down-regulated, whereas miR-181a was up-regulated in aging VSMCs. In young and aging VSMCs, over-expression of ANRIL could down-regulate miR-181a and up-regulate Sirt1. MTT and SA-ß-gal staining assays showed that over-expression of ANRIL and inhibition of miR-181a promoted cell viability and inhibited VSMC senescence. The dual-luciferase reporter assay determined that miR-181a directly targets ANRIL and the 3'-UTR of Sirt1. Furthermore, over-expression of ANRIL inhibited cell cycle arrest and the p53-p21 pathway. CONCLUSION: ANRIL promotes cell viability and inhibits senescence in VSMCs, possibly by regulating miR-181a/Sirt1, and alleviating cell cycle arrest by inhibiting the p53-p21 pathway. This study provides novel insights for the role of ANRIL in the development of cell senescence.


Assuntos
Senescência Celular/efeitos dos fármacos , MicroRNAs/antagonistas & inibidores , Músculo Liso Vascular/efeitos dos fármacos , RNA Longo não Codificante/farmacologia , Sirtuína 1/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Humanos , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo
17.
Opt Express ; 27(22): 31913-31925, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684414

RESUMO

High power continuous-wave (CW) single-frequency 1342 nm lasers are of interest for fundamental research, particularly, for laser cooling of lithium atoms. Using the popular Nd:YVO4 laser crystal requires careful heat management, because strong thermal effects in the gain medium are the most severe limitations of output power. Here, we present a multi-segmented Nd:YVO4 crystal design that consists of three segments with successive doping concentrations, optimized using a theoretical model. In order to quantify the optimization, we measured the thermal lens power of conventional crystal designs and compare them to our multi-segmented design. The optimized design displays a two times lower thermal lens dioptric power for the same amount of absorbed pump power in the non-lasing case. Using the optimized design, we demonstrate a high power all-solid-state laser emitting 10.0 W single-frequency radiation at 1342 nm when operating the laser crystal at room temperature. Further integration of the laser allows us to operate the laser crystal below room temperature for improving output power up to 11.4 W at 8°C. This is explained by the reduction of energy-transfer upconversion and excited-state absorption effects. Stable free-running operation at the low temperature of 8 °C is achieved with the power stability of ± 0.42 % by peak-to-peak fluctuation and frequency peak-to-peak fluctuation of ± 72 MHz in three hours.

18.
Chirality ; 31(6): 457-467, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31062890

RESUMO

Flurbiprofen is a kind of nonsteroidal anti-inflammatory drug, which has been widely used in clinic for treatment of rheumatoid arthritis and osteoarthritis. It has been reported that S-flurbiprofen shows good performance on clinic anti-inflammatory treatment, while R-enantiomer almost has no pharmacological activities. It has important practical values to obtain optically pure S-flurbiprofen. In this work, chiral ionic liquids, which have good structural designability and chiral recognize ability, were selected as the extraction selector by the assistance of quantum chemistry calculations. The distribution behaviors of flurbiprofen enantiomers were investigated in the extraction system, which was composed of organic solvent and aqueous phase containing chiral ionic liquid. The results show that maximum enantioselectivity up to 1.20 was attained at pH 2.0, 25°C using 1,2-dichloroethane as organic solvent, 1-butyl-3-methylimidazole L-tryptophan ([Bmim][L-trp]) as chiral selector. The racemic flurbiprofen initial concentration was 0.2 mmol L-1 , and [Bmim][L-trp] concentration was 0.02 mol L-1 . Furthermore, the recycle of chiral ionic liquids has been achieved by reverse extraction process of the aqueous phase with chiral selector, which is significant for industrial application of chiral ionic liquids and scale-up of the extraction process.


Assuntos
Flurbiprofeno/química , Flurbiprofeno/isolamento & purificação , Extração Líquido-Líquido/métodos , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Dicloretos de Etileno/química , Concentração de Íons de Hidrogênio , Líquidos Iônicos/química , Teoria Quântica , Software , Solventes/química , Estereoisomerismo
19.
J Cell Mol Med ; 22(6): 3223-3237, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29633510

RESUMO

Our present work was aimed to study on the regulatory role of MALAT1/miR-145-5p/AKAP12 axis on docetaxel (DTX) sensitivity of prostate cancer (PCa) cells. The microarray data (GSE33455) to identify differentially expressed lncRNAs and mRNAs in DTX-resistant PCa cell lines (DU-145-DTX and PC-3-DTX) was retrieved from the Gene Expression Omnibus (GEO) database. QRT-PCR analysis was performed to measure MALAT1 expression in DTX-sensitive and DTX-resistant tissues/cells. The human DTX-resistant cell lines DU145-PTX and PC3-DTX were established as in vitro cell models, and the expression of MALAT1, miR-145-5p and AKAP12 was manipulated in DTX-sensitive and DTX-resistant cells. Cell viability was examined using MTT assay and colony formation methods. Cell apoptosis was assessed by TUNEL staining. Cell migration and invasion was determined by scratch test (wound healing) and Transwell assay, respectively. Dual-luciferase assay was applied to analyse the target relationship between lncRNA MALAT1 and miR-145-5p, as well as between miR-145-5p and AKAP12. Tumour xenograft study was undertaken to confirm the correlation of MALAT1/miR-145-5p/AKAP12 axis and DTX sensitivity of PCa cells in vivo. In this study, we firstly notified that the MALAT1 expression levels were up-regulated in clinical DTX-resistant PCa samples. Overexpressed MALAT1 promoted cell proliferation, migration and invasion but decreased cell apoptosis rate of PCa cells in spite of DTX treatment. We identified miR-145-5p as a target of MALAT1. MiR-145-5p overexpression in PC3-DTX led to inhibited cell proliferation, migration and invasion as well as reduced chemoresistance to DTX, which was attenuated by MALAT1. Moreover, we determined that AKAP12 was a target of miR-145-5p, which significantly induced chemoresistance of PCa cells to DTX. Besides, it was proved that MALAT1 promoted tumour cell proliferation and enhanced DTX-chemoresistance in vivo. There was an lncRNA MALAT1/miR-145-5p/AKAP12 axis involved in DTX resistance of PCa cells and provided a new thought for PCa therapy.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ciclo Celular/genética , MicroRNAs/genética , Neoplasias da Próstata/tratamento farmacológico , RNA Longo não Codificante/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Docetaxel/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Próstata/efeitos dos fármacos , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Opt Lett ; 43(8): 1666-1669, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29652335

RESUMO

Second-harmonic generation (SHG) is useful for obtaining single-frequency continuous-wave laser sources at various wavelengths for applications ranging from biology to fundamental physics. Using an external power-enhancement cavity is an effective approach to improve the frequency conversion efficiency. However, thermal effects limit the efficiency, particularly, in high-power operation. Therefore, reducing thermal effects is important when designing a cavity. This Letter reports the use of an external ring cavity for SHG, yielding a 5.2 W, 671 nm laser light with a conversion efficiency of 93.8±0.8% which, to the best of our knowledge, is a new record of conversion efficiency for an external ring cavity. It is achieved using a 10 mm length periodically poled potassium titanyl phosphate crystal and a 65 µm radius beam waist in the cavity so as to minimize thermal dephasing and thermal lensing. Furthermore, a method is developed to determine a conversion efficiency more accurately based on measuring the pump depletion using a photodiode detector and a maximum pump depletion up to 97% is recorded. In this method, the uncertainty is much less than that achieved in a common method by direct measuring with a power meter.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa